The implementation of a new program for the variational calculation of rovibrational state energies and infrared intensities is presented. The program relies on vibrational self-consistent field and vibrational configuration interaction theory and is based on the Watson Hamiltonian. All needed prerequisites, i.e., multidimensional potential energy and dipole moment surfaces, comprehensive symmetry information, the determination of vibrational wave functions, and an efficient calculation of partition functions, are computed in a fully automated manner, which allows us to calculate rovibrational spectra in a black-box type fashion. Moreover, the use of a molecule specific rotational basis leads to reliable rovibrational line lists. Benchmark calculations are provided for thioformaldehyde (H2CS), which shows strong Coriolis coupling effects and a complex rovibrational spectrum. The underlying multidimensional potential energy surface has been calculated at the level of explicitly correlated coupled-cluster theory.
From an astrochemical point of view ketenimine (CH2CNH) is a complex organic molecule (COM) and therefore likely to be a building block for biologically relevant molecules. Since it has been detected in the star-forming region Sagittarius B2(N), it is of high relevance in this field. Although experimental data are available for certain bands, for some energy ranges such as above 1200 cm−1 reliable data virtually do not exist. In addition, high-level ab initio calculations are neither reported for ketenimine nor for one of its deuterated isotopologues. In this paper, we provide for the first time data from accurate quantum chemical calculations and a thorough analysis of the full rovibrational spectrum. Based on high-level potential energy surfaces obtained from explicitly correlated coupled-cluster calculations including up to 4-mode coupling terms, the (ro)vibrational spectrum of ketenimine has been studied in detail by variational calculations relying on rovibrational configuration interaction (RVCI) theory. Strong Fermi resonances were found for all isotopologues. Rovibrational infrared intensities have been obtained from dipole moment surfaces determined from the distinguishable cluster approximation. A comparison of the spectra of the CH2CNH molecule with experimental data validates our results, but also reveals new insight about the system, which shows very strong Coriolis coupling effects.
The rovibrational spectra of metaphosphorous acid, HOPO, and its deuterated isotopologue have been studied by vibrational configuration interaction calculations, relying on the internal coordinate path Hamiltonian and the Watson Hamiltonian. Tunneling effects for the overtones of the torsional mode, which gives rise to the cis–trans isomerization, and its rovibrational transitions have been investigated in detail. Due to strong matrix effects, comparison with experimental data is hindered, and thus, the calculations provide accurate estimates for the fundamental modes of these species.
An outline of a newly developed program for the simulation of rovibrational nonresonant Raman spectra is presented. This program is an extension of our recently developed code for rovibrational infrared spectra [J. Chem Phys. 152 (2020) 244104] and relies on vibrational wavefunctions from variational configuration interaction theory to allow for an almost fully automated calculation of such spectra in pure ab initio fashion. Due to efficient contraction schemes this program requires modest computational resources and it can be controlled by only a few lines of input. As the required polarizability surfaces are also computed in an automated fashion, this implementation enables the routine application to small molecules. For demonstrating its capabilities, benchmark calculations for water H216O are compared to reference data and spectra for the beryllium dihydride dimer, Be2H4 (D2h), are predicted. The inversion symmetry of the D2h systems lead to complementary infrared and Raman spectra, which are needed both for a comprehensive investigation of this system.
In the quasi-one-dimensional (TMTTF)2X compounds with effectively quarter-filled bands, electronic charge order is stabilized from the delicate interplay of Coulomb repulsion and electronic bandwidth. The correlation strength is commonly tuned by physical pressure or chemical substitution with stoichiometric ratios of anions and cations. Here, we investigate the charge-ordered state through partial substitution of the anions in (TMTTF)2[AsF6]1−x[SbF6]x with x≈0.3, determined from the intensity of infrared vibrations, which is sufficient to suppress the spin-Peierls state. Our dc transport experiments reveal a transition temperature TCO = 120 K and charge gap ΔCO=430 K between the values of the two parent compounds (TMTTF)2AsF6 and (TMTTF)2SbF6. Upon plotting the two parameters for different (TMTTF)2X, we find a universal relationship between TCO and ΔCO yielding that the energy gap vanishes for transition temperatures TCO≤60 K. While these quantities indicate that the macroscopic correlation strength is continuously tuned, our vibrational spectroscopy results probing the local charge disproportionation suggest that 2δ is modulated on a microscopic level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.