Context. Astrometry relies on the precise measurement of positions and motions of celestial objects. Driven by the ever-increasing accuracy of astrometric measurements, it is important to critically assess the maximum precision that could be achieved with these observations. Aims. The problem of astrometry is revisited from the perspective of analyzing the attainability of well-known performance limits (the Cramér-Rao bound) for the estimation of the relative position of light-emitting (usually point-like) sources on a CCD-like detector using commonly adopted estimators such as the weighted least squares and the maximum likelihood. Methods. Novel technical results are presented to determine the performance of an estimator that corresponds to the solution of an optimization problem in the context of astrometry. Using these results we are able to place stringent bounds on the bias and the variance of the estimators in close form as a function of the data. We confirm these results through comparisons to numerical simulations under a broad range of realistic observing conditions. Results. The maximum likelihood and the weighted least square estimators are analyzed. We confirm the sub-optimality of the weighted least squares scheme from medium to high signal-to-noise found in an earlier study for the (unweighted) least squares method. We find that the maximum likelihood estimator achieves optimal performance limits across a wide range of relevant observational conditions. Furthermore, from our results, we provide concrete insights for adopting an adaptive weighted least square estimator that can be regarded as a computationally efficient alternative to the optimal maximum likelihood solution.Conclusions. We provide, for the first time, close-form analytical expressions that bound the bias and the variance of the weighted least square and maximum likelihood implicit estimators for astrometry using a Poisson-driven detector. These expressions can be used to formally assess the precision attainable by these estimators in comparison with the minimum variance bound.
The central problem of Hypothesis Testing (HT) consists in determining the error exponent of the optimal Type II error for a fixed (or decreasing with the sample size) Type I error restriction. This work studies error exponent limits in distributed HT subject to partial communication constraints. We derive general conditions on the Type I error restriction under which the error exponent of the optimal Type II error presents a closed-form characterization for the specific case of testing against independence. By building on concentration inequalities and rate-distortion theory, we first derive the performance limit in terms of the error exponent for a family of decreasing Type I error probabilities. Then, we investigate the non-asymptotic (or finite sample-size) regime for which novel upper and lower bounds are derived to bound the optimal Type II error probability. These results shed light on the velocity at which the error exponents, i.e. the asymptotic limits, are achieved as the samples grows.
A central problem in Binary Hypothesis Testing (BHT) is to determine the optimal tradeoff between the Type I error (referred to as false alarm) and Type II (referred to as miss) error. In this context, the exponential rate of convergence of the optimal miss error probability -as the sample size tends to infinity -given some (positive) restrictions on the false alarm probabilities is a fundamental question to address in theory. Considering the more realistic context of a BHT with a finite number of observations, this paper presents a new non-asymptotic result for the scenario with monotonic (sub-exponential decreasing) restriction on the Type I error probability, which extends the result presented by Strassen in 2009. Building on the use of concentration inequalities, we offer new upper and lower bounds to the optimal Type II error probability for the case of finite observations. Finally, the derived bounds are evaluated and interpreted numerically (as a function of the number samples) for some vanishing Type I error restrictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.