Background— The adaptive growth of blood vessels is an important protective mechanism in cardiovascular disease. However, the underlying regulatory mechanisms of this process are only partly understood. Recently, small endogenous RNAs (microRNAs [miRNAs]) were found to play an important role in embryonic and postnatal vascular development. Here, we used miRNA transcriptome analysis after induction of hind-limb ischemia in mice to screen for miRNAs involved in adaptive blood vessel growth following arterial occlusion. Methods and Results— Using miRNA arrays, we explored the miRNA expression profile during adaptive neovascularization. We describe specific changes in miRNA expression patterns and show that miRNA-100 is significantly downregulated after induction of hind-limb ischemia in mice. Our data demonstrate that miR-100 modulates proliferation, tube formation, and sprouting activity of endothelial cells and migration of vascular smooth muscle cells and functions as an endogenous repressor of the serine/threonine protein kinase mammalian target of rapamycin (mTOR). Whereas miR-100 inhibition increased mTOR levels in endothelial cells, overexpression of miR-100 reduced mTOR expression and consequently attenuated cellular proliferation. Supporting this notion, overexpression of an mTOR construct lacking the miRNA binding site rescued the inhibitory effect of miR-100 on cell proliferation. Accordingly, miR-100 inhibition by specific antagomirs in vivo stimulated angiogenesis and resulted in functional improvement of perfusion after femoral artery occlusion in mice. In contrast, treatment with the mTOR inhibitor rapamycin had the opposite effect. Conclusions— Our data demonstrate that miR-100 has an antiangiogenic function and represses mTOR signaling in endothelial and vascular smooth muscle cells. Inhibition of miR-100 could be a novel approach for the modulation of blood vessel growth and other mTOR-dependent processes.
Monocyte adhesion to shear stress-activated endothelium stands as an important initial step during arteriogenesis (collateral artery growth). Using multiple approaches, we tested the hypothesis that monocyte adhesion via intercellular adhesion molecule-1 (ICAM-1) and selectin interactions is essential for adaptive arteriogenesis. Forty-eight New Zealand White rabbits received either solvent, monocyte chemoattractant protein-1 (MCP-1) alone, MCP-1 plus ICAM-mab, or MCP-1 plus an IgG2a isotype control via osmotic minipumps. After 7 days, collateral conductance was evaluated: solvent 4.01 (mL/min per 100 mm Hg), MCP-1 plus ICAM-mab 8.04 (versus solvent P=NS), and MCP-1 alone 33.11 (versus solvent P<0.05). Furthermore, the right femoral arteries of ICAM-1-/-, Mac-1-/- and mice having defective selectin interactions (FT4/7-/-) as well as their corresponding controls were ligated. One week later, perfusion ratios were determined by the use of fluorescent microspheres. FT4/7-/- mice did not show any significant difference in perfusion restoration whereas ICAM-1-/- and Mac-1-/- mice had a significant reduction in arteriogenesis as compared with matching controls (FT4/7-WT 37+/-9%, FT4/7-/- 32+/-3%, P=0.31; C57BL/6J 59+/-9%, ICAM-1-/- 36+/-8%, P<0.05; Mac-1-/- 42+/-3%, P<0.05). ICAM-1/Mac-1-mediated monocyte adhesion to the endothelium of collateral arteries is an essential step for arteriogenesis, whereas this process can proceed via selectin interaction independent mechanisms. Furthermore, in vivo treatment with monoclonal antibodies against ICAM-1 totally abolishes the stimulatory effect of MCP-1 on collateral artery growth, suggesting that the mechanism of the MCP-1-induced arteriogenesis proceeds via the localization of monocytes rather than the action of the MCP-1 molecule itself.
Here, we report a novel role for miR-214 in regulating angiogenesis and identify Quaking as a direct target of miR-214. The anti-angiogenic effect of miR-214 is mediated through the down-regulation of Quaking and pro-angiogenic growth factor expression. This study presents miR-214 as a potential important target for pro- or anti-angiogenic therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.