Particle filters are often used for tracking objects within a scene. As the prediction model of a particle filter is often implemented using basic movement predictions such as random walk, constant velocity or acceleration, these models will usually be incorrect. Therefore, this paper proposes a new approach, based on a Canonical Correlation Analysis (CCA) tracking method which provides an object specific motion model. This model is used to construct a proposal distribution of the prediction model which predicts new states, increasing the robustness of the particle filter. Results confirm an increase in accuracy compared to state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.