Chicken eggs in the early phase of breeding are between in vitro and in vivo systems and provide a vascular test environment not only to study angiogenesis but also to study tumorigenesis. After the chick chorioallantoic membrane (CAM) has developed, its blood vessel network can be easily accessed, manipulated and observed and therefore provides an optimal setting for angiogenesis assays. Since the lymphoid system is not fully developed until late stages of incubation, the chick embryo serves as a naturally immunodeficient host capable of sustaining grafted tissues and cells without species-specific restrictions. In addition to nurturing developing allo-and xenografts, the CAM blood vessel network provides a uniquely supportive environment for tumor cell intravasation, dissemination, and vascular arrest and a repository where arrested cells extravasate to form micro metastatic foci.For experimental purposes, in most of the recent studies the CAM was exposed by cutting a window through the egg shell and experiments were carried out in ovo, resulting in significant limitations in the accessibility of the CAM and possibilities for observation and photo documentation of effects. When shell-less cultures of the chick embryo were used 1-4 , no experimental details were provided and, if published at all, the survival rates of these cultures were low. We refined the method of ex ovo culture of chick embryos significantly by introducing a rationally controlled extrusion of the egg content. These ex ovo cultures enhance the accessibility of the CAM and chick embryo, enabling easy in vivo documentation of effects and facilitating experimental manipulation of the embryo. This allows the successful application to a large number of scientific questions: (1) As an improved angiogenesis assay 5,6 , (2) an experimental set up for facilitated injections in the vitreous of the chick embryo eye 7-9 , (3) as a test environment for dissemination and intravasation of dispersed tumor cells from established cell lines inoculated on the CAM 10-12 , (4) as an improved sustaining system for successful transplantation and culture of limb buds of chicken and mice 13 as well as (5) for grafting, propagation, and re-grafting of solid primary tumor tissue obtained from biopsies on the surface of the CAM 14 .In this video article we describe the establishment of a refined chick ex ovo culture and CAM assay with survival rates over 50%. Besides we provide a step by step demonstration of the successful application of the ex ovo culture for a large number of scientific applications.Daniel S. Dohle, Susanne D. Pasa, and Sebastian Gustmann contributed equally to this study. ProtocolAll equipment and reagents have to be purchased sterile or needs to be heat or steam sterilized or sterilized with 70% ETOH.The authors state that experiments on animals were performed in accordance with the European Communities Council Directive (86/609/EEC), following the Guidelines of the NIH regarding the care and use of animals for experimental procedures and ...
BackgroundEndoretroviruses account for circa 8 % of all transposable elements found in the genome of humans and other animals. They represent a genetic footprint of ancestral germ-cell infections of exoviruses that is transmittable to the progeny by Mendelian segregation. Traces of human endogenous retroviruses are physiologically expressed in ovarial, testicular and placental tissues as well as in stem cells. In addition, a number of these fossil viral elements have also been related to carcinogenesis. However, a relation between endoretroviruses expression and chemoresistance has not been reported yet.MethodsTwenty colorectal carcinoma patient samples were scrutinized for HERV-WE1 and HERV-FRD1 endoretroviruses using immunohistochemical approaches. In order to search for differential expression of these elements in chemotherapy refractory cells, a resistant HCT8 colon carcinoma subline was developed by serial etoposide exposure. Endoretroviral elements were detected by immunocytochemical staining, qPCR and ELISA. IC50-values of antiviral and cytostatic drugs in HCT8 cells were determined by MTT proliferation assay. The antivirals-cytostatics interaction was evaluated by the isobologram method.ResultsIn this work, we show for the first time that HERV-WE1, HERV-FRD1, HERV-31, and HERV-V1 are a) simultaneously expressed in treatment-naïve colon carcinoma cells and b) upregulated after cytostatic exposure, suggesting that these retroviral elements are intimately related to chemotherapy resistance. We found a number of antiviral drugs to have cytotoxic activity and the ability to force the downregulation of HERV proteins in vitro. We also demonstrate that the use of different antiviral compounds alone or in combination with anticancer agents results in a synergistic antiproliferative effect and downregulation of different endoretroviral elements in highly chemotherapy-resistant colorectal tumor cells.ConclusionsEnhanced HERV-expression is associated with chemoresistance in colon carcinomas which can be overcome by antiviral drugs alone or in combination with anticancer drugs. Therefore, the introduction of antiviral compounds to the current chemotherapy regimens potentially improves patient outcomes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-015-0199-5) contains supplementary material, which is available to authorized users.
Until recently, acquired resistance to cytostatics had mostly been attributed to biochemical mechanisms such as decreased intake and/or increased efflux of therapeutics, enhanced DNA repair, and altered activity or deregulation of target proteins. Although these mechanisms have been widely investigated, little is known about membrane barriers responsible for the chemical imperviousness of cell compartments and cellular segregation in cytostatic-treated tumors. In highly heterogeneous cross-resistant and radiorefractory cell populations selected by exposure to anticancer agents, we found a number of atypical recurrent cell types in (1) tumor cell cultures of different embryonic origins, (2) mouse xenografts, and (3) paraffin sections from patient tumors. Alongside morphologic peculiarities, these populations presented cancer stem cell markers, aberrant signaling pathways, and a set of deregulated miRNAs known to confer both stem-cell phenotypes and highly aggressive tumor behavior. The first type, named spiral cells, is marked by a spiral arrangement of nuclei. The second type, monastery cells, is characterized by prominent walls inside which daughter cells can be seen maturing amid a rich mitochondrial environment. The third type, called pregnant cells, is a giant cell with a syncytium-like morphology, a main nucleus, and many endoreplicative functional progeny cells. A rare fourth cell type identified in leukemia was christened shepherd cells, as it was always associated with clusters of smaller cells. Furthermore, a portion of resistant tumor cells displayed nuclear encapsulation via mitochondrial aggregation in the nuclear perimeter in response to cytostatic insults, probably conferring imperviousness to drugs and long periods of dormancy until nuclear eclosion takes place. This phenomenon was correlated with an increase in both intracellular and intercellular mitochondrial traffic as well as with the uptake of free extracellular mitochondria. All these cellular disorders could, in fact, be found in untreated tumor cells but were more pronounced in resistant entities, suggesting a natural mechanism of cell survival triggered by chemical injury, or a primitive strategy to ensure stemming, self-renewal, and differentiation under adverse conditions, a fact that may play a significant role in chemotherapy outcomes.
Relapse of cancer months or years after an apparently successful therapy is probably caused by cancer stem cells (CSCs) due to their intrinsic features like dormant periods, radiorefraction, and acquired multidrug resistance (MDR) phenotypes, among other mechanisms of cellular drug evasiveness. Thus, the lack of currently efficacious interventions remains a major problem in the treatment of malignancies, together with the inability of existing drugs to destroy specifically CSCs. Neuroblastomas per se are highly chemotherapy-refractory extracranial tumors in infants with very low survival rates. So far, no effective cytostatics against this kind of tumors are clinically available. Therefore, we have put much effort into the development of agents to efficiently combat this malignancy. For this purpose, we tested several compounds isolated from Cuban propolis on induced CSCs (iCSC) derived from LAN-1 neuroblastoma cells which expressed several characteristics of tumor-initiating cells both in in-vitro and in-vivo models. Some small molecules such as flavonoids and polycyclic polyprenylated acylphloroglucinols (PPAP) were isolated using successive RT-HPLC cycles and identified employing mass spectrometry and NMR spectroscopic techniques. Their cytotoxicity was first screened in sensitive cell systems by MTT proliferation assays and afterwards studied in less sensitive neuroblastoma iCSC models. We found several compounds with considerable anti-iCSC activity, most of them belonging to the PPAP class. The majority of the compounds act in a pleiotropic manner on the molecular biology of tumors although their specific targets remain unclear. Nevertheless, two substances, one of them a flavonoid, induced a strong disruption of tubulin polymerization. In addition, an unknown compound strongly inhibited replicative enzymes like toposimerases I/II and DNA polymerase. Here, we report for the first time cytotoxic activities of small molecules isolated from Caribbean propolis which could be promising therapeutics or lead structures against therapy-refractory neuroblastoma entities. *Contributed equally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.