Familial Hemophagocytic Lymphohistiocytosis type 2 (FHL2) results from mutations in PRF1. We described two unrelated individuals who presented with FHL, in whom severely impaired NK cytotoxicity and decrease perforin expression was observed. DNA sequencing of PRF1 demonstrated that both were not only heterozygous for the p.54R > C/91A > V haplotype but also presented with the novel variant p.47G > V at the perforin protein. Perforin mRNA was found to be increased in a individual with that genotype. A carrier of the novel variant also demonstrated altered perforin mRNA and protein expression. Phylogenetic analysis and multiple alignments with perforin orthologous demonstrated a high level of conservation at Gly47. PolyPhen-2 and PROVEAN predicted p.47G > V to be "probably damaging" and "deleterious", respectively. A thermodynamic analysis showed that this variant was highly stabilizing, decreasing the protein internal energy. The ab initio perforin molecular modeling indicated that Gly47 is buried inside the hydrophobic core of the MACPF domain, which is crucial for the lytic pore formation and protein oligomerization. After the in silico induction of the p.47G > V mutation, Val47 increased the interactions with the surrounding amino acids due to its size and physical properties, avoiding a proper conformational change of the domain. To our knowledge, this is the first description supporting that p.47G > V is a pathogenic variant that in conjunction with p.54R > C/91A > V might result in the clinical phenotype of FHL2.
Background: LPS-responsive beige -like anchor protein (LRBA) deficiency is a primary immunodeficiency disease caused by loss of LRBA protein expression, due to biallelic mutations in LRBA gene. LRBA deficiency patients exhibit a clinically heterogeneous syndrome. The main clinical complication of LRBA deficiency is immune dysregulation. Furthermore, hypogammaglobulinemia is found in more than half of patients with LRBA-deficiency. To date, no patients with this condition have been reported in Colombia Objective: To evaluate the expression of the LRBA protein in patients from Colombia with clinical phenotype associated to LRBA-deficiency. Methods: In the present study the LRBA-expression in patients from Colombia with clinical phenotype associated to LRBA-deficiency was evaluated. After then, the clinical, the immunological characteristics and the possible genetic variants in LRBA or other genes associated with the immune system in patients that exhibit decrease protein expression was evaluated. Results: In total, 112 patients with different clinical manifestations associated to the clinical LRBA phenotype were evaluated. The LRBA expression varies greatly between different healthy donors and patients. Despite the great variability in the LRBA expression, six patients with a decrease in LRBA protein expression were observed. However, no pathogenic or possible pathogenic biallelic variants in LRBA, or in genes related with the immune system were found. Conclusion: LRBA expression varies greatly between different healthy donors and patients. Reduction LRBA-expression in 6 patients without homozygous mutations in LRBA or in associated genes with the immune system was observed. These results suggest the other genetic, epigenetic or environmental mechanisms, that might be regulated the LRBA-expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.