Life cycle adaptation to latitudinal and seasonal variation in photoperiod and temperature is a major determinant of evolutionary success in flowering plants. Whereas the life cycle of the dicotyledonous model species Arabidopsis thaliana is controlled by two epistatic genes, FLOWERING LOCUS C and FRIGIDA, three unrelated loci (VERNALIZATION) determine the spring and winter habits of monocotyledonous plants such as temperate cereals. In the core eudicot species Beta vulgaris, whose lineage diverged from that leading to Arabidopsis shortly after the monocot-dicot split 140 million years ago, the bolting locus B is a master switch distinguishing annuals from biennials. Here, we isolated B and show that the pseudo-response regulator gene BOLTING TIME CONTROL 1 (BvBTC1), through regulation of the FLOWERING LOCUS T genes, is absolutely necessary for flowering and mediates the response to both long days and vernalization. Our results suggest that domestication of beets involved the selection of a rare partial loss-of-function BvBTC1 allele that imparts reduced sensitivity to photoperiod that is restored by vernalization, thus conferring bienniality, and illustrate how evolutionary plasticity at a key regulatory point can enable new life cycle strategies.
HIPP26 from Arabidopsis thaliana belongs to a novel class of plant proteins, characterized by a heavy metal associated domain and an additional isoprenylation motif. It is induced during cold, salt and drought stress. The nuclear localization of HIPP26, predicted by a NLS motif, could be confirmed in onion epidermal cells overexpressing GFP-HIPP26. Experiments with modified HIPP26 indicate that the isoprenylation plays a role in the spatial distribution in the nucleus. Using promoter-GUS constructs, a tissue specific expression pattern of HIPP26 could be shown, with high expression in the vascular tissue. By a yeast-two-hybrid approach a strong interaction of HIPP26 with the zinc finger homeodomain transcription factor ATHB29, which is known to play a role in dehydration stress response could be detected. This was confirmed by GST pull-down assays. When using a modified HIPP26 lacking the two central cysteines of the heavy metal associated domain, ATHB29 was not bound in the GST pull-down assay, indicating that this structure is necessary for the interaction. Further yeast-two-hybrid analyses testing interaction of different members of the HIPP family with related zinc finger transcription factors revealed a specific interaction of ATHB29 with several HIPP proteins. A functional relationship between HIPP26 and ATHB29 is also indicated by experiments with mutants of HIPP26 showing altered expression levels of such genes known to be regulated by ATHB29.
Many plant species in temperate climate regions require vernalization over winter to initiate flowering. Flowering Locus C (FLC) and FLC-like genes are key regulators of vernalization requirement and growth habit in winter-annual and perennial Brassicaceae. In the biennial crop species Beta vulgaris ssp. vulgaris in the evolutionarily distant Caryophyllales clade of core eudicots growth habit and bolting time are controlled by the vernalization and photoperiod response gene BTC1 and the downstream BvFT1-BvFT2 module. B. vulgaris also contains a vernalization-responsive FLC homolog (BvFL1). Here, to further elucidate the regulation of vernalization response and growth habit in beet, we functionally characterized BvFL1 by RNAi and over-expression in transgenic plants. BvFL1 RNAi neither eliminated the requirement for vernalization of biennial beets nor had a major effect on bolting time after vernalization. Over-expression of BvFL1 resulted in a moderate late-bolting phenotype, with bolting after vernalization being delayed by approximately 1 week. By contrast, RNAi-induced down-regulation of the BvFT1-BvFT2 module led to a strong delay in bolting after vernalization by several weeks. The data demonstrate for the first time that an FLC homolog does not play a major role in the control of vernalization response in a dicot species outside the Brassicaceae.
Sugar beet (Beta vulgaris ssp. vulgaris) is a biennial, sucrose-storing plant, which is mainly cultivated as a spring crop and harvested in the vegetative stage before winter. For increasing beet yield, over-winter cultivation would be advantageous. However, bolting is induced after winter and drastically reduces yield. Thus, post-winter bolting control is essential for winter beet cultivation. To identify genetic factors controlling bolting after winter, a F2 population was previously developed by crossing the sugar beet accessions BETA 1773 with reduced bolting tendency and 93161P with complete bolting after winter. For a mapping-by-sequencing analysis, pools of 26 bolting-resistant and 297 bolting F2 plants were used. Thereby, a single continuous homozygous region of 103 kb was co-localized to the previously published BR1 QTL for post-winter bolting resistance (Pfeiffer et al., 2014). The BR1 locus was narrowed down to 11 candidate genes from which a homolog of the Arabidopsis CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 73-I (CPSF73-I) was identified as the most promising candidate. A 2 bp deletion within the BETA 1773 allele of BvCPSF73-Ia results in a truncated protein. However, the null allele of BvCPSF73-Ia might partially be compensated by a second BvCPSF73-Ib gene. This gene is located 954 bp upstream of BvCPSF73-Ia and could be responsible for the incomplete penetrance of the post-winter bolting resistance allele of BETA 1773. This result is an important milestone for breeding winter beets with complete bolting resistance after winter.
Seed production in hybrid crops such as sugar beet (Beta vulgaris ssp. vulgaris) is greatly facilitated by synchronous flowering times of the hybrid parents. In the model species Arabidopsis thaliana, many of the genes that control flowering time have been identified, but knowledge of the genetic and molecular basis of flowering time control in sugar beet is just beginning to emerge. To start deciphering the genetic landscape of flowering time control in cultivated biennial beets after vernalization over winter, we developed multi-parent QTL populations derived from five breeding lines. Three partially inbred lines were used to generate two segregating populations. One parent was in common. The other segregating populations comprised three full-sib families based on heterozygous parents. The parents spanned a wide range of flowering characteristics and depicted the range of flowering times that can be expected in a common sugar beet breeding population. The offspring (F1) The difference between the two years we suppose was due to the very hot April in 2007 in Provence, France. The April 2007 displayed a mean temperature that was 6 °C higher than average. This led to a strong year but supposedly also to a strong genotype*year interaction. The year effect was 6.2 days for BF and 2.2 days for FF, resp..For genetic map construction and QTL mapping, the individual F2 plants were genotyped with 173 EST-derived SNP markers. In addition, we developed markers for a total of 14 recently described flowering time genes in B. vulgaris or candidate genes which were identified on the basis of homology to floral regulators in A. thaliana. Candidate genes included floral integrators and homologs of key genes in the major floral regulatory pathways. Ten of these genes were
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.