Effective local light transport guiding demands for high quality guiding information, i.e., a precise representation of the directional incident radiance distribution at every point inside the scene. We introduce a parallax-aware distribution model based on parametric mixtures. By parallax-aware warping of the distribution, the local approximation of the 5D radiance field remains valid and precise across large spatial regions, even for close-by contributors. Our robust optimization scheme fits parametric mixtures to radiance samples collected in previous rendering passes. Robustness is achieved by splitting and merging of components refining the mixture. These splitting and merging decisions minimize and bound the expected variance of the local radiance estimator. In addition, we extend the fitting scheme to a robust, iterative update method, which allows for incremental training of our model using smaller sample batches. This results in more frequent training updates and, at the same time, significantly reduces the required sample memory footprint. The parametric representation of our model allows for the application of advanced importance sampling methods such as radiance-based, cosine-aware, and even product importance sampling. Our method further smoothly integrates next-event estimation (NEE) into path guiding, avoiding importance sampling of contributions better covered by NEE. The proposed robust fitting and update scheme, in combination with the parallax-aware representation, results in faster learning and lower variance compared to state-of-the-art path guiding approaches.
Figure 1: Sampling quality for the KITCHENETTE scene containing numerous anisotropic BRDFs. Our product sampling produces a visibly smoother image compared to Vorba et al. [VKŠ * 14] at 512 samples per pixel.
Path guiding is a promising tool to improve the performance of path tracing algorithms. However, not much research has investigated what target densities a guiding method should strive to learn for optimal performance. Instead, most previous work pursues the zero-variance goal: The local decisions are guided under the assumption that all other decisions along the random walk will be sampled perfectly. In practice, however, many decisions are poorly guided, or not guided at all. Furthermore, learned distributions are often marginalized, e.g., by neglecting the BSDF. We present a generic procedure to derive theoretically optimal target densities for local path guiding. These densities account for variance in nested estimators, and marginalize provably well over, e.g., the BSDF. We apply our theory in two state-of-the-art rendering applications: a path guiding solution for unidirectional path tracing [Müller et al. 2017] and a guiding method for light source selection for the many lights problem [Vévoda et al. 2018]. In both cases, we observe significant improvements, especially on glossy surfaces. The implementations for both applications consist of trivial modifications to the original code base, without introducing any additional overhead.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.