Abstract. Finding optimal inpainting data plays a key role in the field of image compression with partial differential equations (PDEs). In this paper, we optimise the spatial as well as the tonal data such that an image can be reconstructed with minimised error by means of discrete homogeneous diffusion inpainting. To optimise the spatial distribution of the inpainting data, we apply a probabilistic data sparsification followed by a nonlocal pixel exchange. Afterwards we optimise the grey values in these inpainting points in an exact way using a least squares approach. The resulting method allows almost perfect reconstructions with only 5% of all pixels. This demonstrates that a thorough data optimisation can compensate for most deficiencies of a suboptimal PDE interpolant.
Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. Apart from these specific contributions, we also give an extensive literature survey on PDE-based image compression methods.
Summary and ConclusionsThe contributions of our work are twofold: On the one hand we gave a comprehensive survey on the state-of-the-art in PDE-based image compression.
We derive new explicit expressions for the components of Moore-Penrose inverses of symmetric difference matrices. These generalized inverses are applied in a new regularization approach for scattered data interpolation based on partial differential equations. The columns of the Moore-Penrose inverse then serve as elements of a dictionary that allow a sparse signal approximation. In order to find a set of suitable data points for signal representation we apply the orthogonal patching pursuit (OMP) method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.