Muscle-invasive bladder cancer (MIBC) represents a highly aggressive tumor type compared to non-muscle-invasive tumors. MIBC is characterized by specific molecular alterations, which may also modulate extracellular tumorigenic effects. Tumor-associated exosomes, especially exosomal miRNAs, are important regulators in the interaction between tumor cells and tumor microenvironment by affecting tumor-promoting processes in target cells. It is important to analyze whether their exosomal patterns also reflect the specific molecular characteristics of MIBC. The aim of this study was to compare the miRNA expression in secreted exosomes from urinary bladder cancer cells (UBC) with different degrees of invasiveness. By electron microscopy, nanotracking analysis and western blot we proofed a high quality of isolated exosomes. Microarray analysis identified an invasion-associated signature of 15 miRNAs, which is significantly altered in exosomes of invasive UBC compared to non-invasive counterparts. Therefrom, 9 miRNAs are consistent differently expressed in both, invasive cells and their secreted exosomes. The remaining 6 exosome-specific miRNAs are only deregulated in exosomes but not in their parental cells. MiRNA alterations were verified by qPCR in cell culture and urinary exosomes. In conclusion, we showed that exosomes from invasive UBC cells are characterized by a specific miRNA signature. Further analyses have to clarify the functional relevance of exosomal miRNAs secreted by invasive bladder cancer cells for modification of the tumor microenvironment and their putative role as molecular markers in liquid biopsies.
Analysis of the human protein-tyrosine phosphatase (PTP) PTPRJ mRNA detected three in-frame AUGs at the 5′-end (starting at nt +14, +191 and +356) with no intervening stop codons. This tandem AUG arrangement is conserved between humans and the mouse and is unique among the genes of the classical PTPs. Until now it was assumed that the principal open reading frame (ORF) starts at AUG356. Our experiments showed that: (i) translation of the mRNA synthesized under the PTPRJ promoter starts predominantly at AUG191, leading to the generation of a 55 amino acid sequence preceding the signal peptide; (ii) the longer form is being likewise correctly processed into mature PTPRJ; (iii) the translation of the region between AUG191 and AUG356 inhibits the overall expression, a feature which depends on the sequence of the encoded peptide. Specifically, a sequence of 13 amino acids containing multiple arginine residues (RRTGWRRRRRRRR) confers the inhibition. In the absence of uORF these previously unrecognized characteristics of the 5′-end of the mRNA present a novel mechanism to suppress, and potentially to regulate translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.