To optimize fitness a plant should monitor its metabolism to appropriately control growth and defense. Primary metabolism can be measured by the universally conserved TOR (Target of Rapamycin) pathway to balance growth and development with the available energy and nutrients. Recent work suggests that plants may measure defense metabolites to potentially provide a strategy ensuring fast reallocation of resources to coordinate plant growth and defense. There is little understanding of mechanisms enabling defense metabolite signaling. To identify mechanisms of defense metabolite signaling, we used glucosinolates, an important class of plant defense metabolites. We report novel signaling properties specific to one distinct glucosinolate, 3-hydroxypropylglucosinolate across plants and fungi. This defense metabolite, or derived compounds, reversibly inhibits root growth and development. 3-hydroxypropylglucosinolate signaling functions via genes in the ancient TOR pathway. If this event is not unique, this raises the possibility that other evolutionarily new plant metabolites may link to ancient signaling pathways.
Glucosinolates constitute the primary defense metabolites in Arabidopsis thaliana (Arabidopsis). Indole and aliphatic glucosinolates, biosynthesized from tryptophan and methionine, respectively, are known to serve distinct biological functions. Although all genes in the biosynthetic pathways are identified, and it is known where glucosinolates are stored, it has remained elusive where glucosinolates are produced at the cellular and tissue level. To understand how the spatial organization of the different glucosinolate biosynthetic pathways contributes to their distinct biological functions, we investigated the localization of enzymes of the pathways under constitutive conditions and, for indole glucosinolates, also under induced conditions, by analyzing the spatial distribution of several fluorophore-tagged enzymes at the whole plant and the cellular level. We show that key steps in the biosynthesis of the different types of glucosinolates are localized in distinct cells in separate as well as overlapping vascular tissues. The presence of glucosinolate biosynthetic enzymes in parenchyma cells of the vasculature may assign new defense-related functions to these cell types. The knowledge gained in this study is an important prerequisite for understanding the orchestration of chemical defenses from site of synthesis to site of storage and potential (re)mobilization upon attack.
Implementing new methodology for sampling rhizosecreted glucosinolates from Arabidopsis, we discovered that import from apoplast is a prerequisite for the translocation of stele-synthesized phytochemicals across the endodermis barrier and into the rhizosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.