Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed employing Roche's GS FLX Titanium technology and compared to a previous dataset obtained from the same community DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class, whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also identified additional taxa that were missed by the previous study, including members of the genera Streptococcus, Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus bourgensis. While rarefaction analyses still indicate incomplete coverage, examination of the GS FLX Titanium dataset resulted in the identification of additional genera and functional elements, providing a far more complete coverage of the community involved in anaerobic fermentative pathways leading to methane formation.
Periodontitis, one of the most common diseases in the world, is caused by a mixture of pathogenic bacteria and inflammatory host responses and often treated by antimicrobials as an adjunct to scaling and root planing (SRP). Our study aims to elucidate explorative and descriptive temporal shifts in bacterial communities between patients treated by SRP alone versus SRP plus antibiotics. This is the first metagenomic study using an Ion Torrent Personal Genome Machine (PGM). Eight subgingival plaque samples from four patients with chronic periodontitis, taken before and two months after intervention were analyzed. Amplicons from the V6 hypervariable region of the 16S rRNA gene were generated and sequenced each on a 314 chip. Sequencing reads were clustered into operational taxonomic units (OTUs, 3% distance), described by community metrics, and taxonomically classified. Reads ranging from 599,933 to 650,416 per sample were clustered into 1,648 to 2,659 non-singleton OTUs, respectively. Increased diversity (Shannon and Simpson) in all samples after therapy was observed regardless of the treatment type whereas richness (ACE) showed no correlation. Taxonomic analysis revealed different microbial shifts between both therapy approaches at all taxonomic levels. Most remarkably, the genera Porphyromonas, Tannerella, Treponema, and Filifactor all harboring periodontal pathogenic species were removed almost only in the group treated with SPR and antibiotics. For the species T. forsythia and P. gingivalis results were corroborated by real-time PCR analysis. In the future, hypothesis free metagenomic analysis could be the key in understanding polymicrobial diseases and be used for therapy monitoring. Therefore, as read length continues to increase and cost to decrease, rapid benchtop sequencers like the PGM might finally be used in routine diagnostic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.