Malaria remains a global health burden with Plasmodium falciparum accounting for the highest mortality and morbidity. Malaria in pregnancy can lead to the development of placental malaria, where P. falciparum-infected erythrocytes adhere to placental receptors, triggering placental inflammation and subsequent damage, causing harm to both mother and her infant. Histopathological studies of P. falciparum-infected placentas revealed various placental abnormalities such as excessive perivillous fibrinoid deposits, breakdown of syncytiotrophoblast integrity, trophoblast basal lamina thickening, increased syncytial knotting, and accumulation of mononuclear immune cells within intervillous spaces. These events in turn, are likely to impair placental development and function, ultimately causing placental insufficiency, intrauterine growth restriction, preterm delivery and low birth weight. Hence, a better understanding of the mechanisms behind placental alterations and damage during placental malaria is needed for the design of effective interventions. In this review, using evidence from human studies and murine models, an integrated view on the potential mechanisms underlying placental pathologies in malaria in pregnancy is provided. The molecular, immunological and metabolic changes in infected placentas that reflect their responses to the parasitic infection and injury are discussed. Finally, potential models that can be used by researchers to improve our understanding on the pathogenesis of malaria in pregnancy and placental pathologies are presented.
Background Dengue can be complicated by severe outcomes including cardiac impairment, and the lack of reliable prognostic biomarkers poses a challenge in managing febrile dengue patients. Here, we investigated the functionality of soluble suppressor of tumorigenicity (sST2) as a predictive marker of severe dengue and its association in dengue-associated cardiac impairment. Methods Plasma samples, aged >16 years, collected from 36 dengue fever, 43 dengue with warning signs, 11 severe dengue (collected at febrile, critical and recovery phases) and 30 controls were assayed for plasma levels of sST2, troponin T and N-terminal (NT)-pro hormone brain natriuretic peptide (NT-proBNP) by ELISA. Cardiac parameters: stroke index (SI), cardiac index (CI) and Granov-Goor Index (GGI) were measured with a bioimpedance device during the different phases for dengue subjects and once for the controls. Principal findings In the febrile, critical and early recovery phases, sST2 levels were significantly elevated in dengue participants and sST2 levels increased with increasing disease severity (P < 0.01 for all). sST2 concentrations were negatively correlated with SI (r = -0.48; P < 0.001, r = -0.55; P < 0.001), CI (r = -0.26; P = 0.02, r = -0.6: P < 0.001) and GGI (r = -0.44; P < 0.001, r = -0.57; P < 0.001) in the critical and early recovery phases. In contrast, sST2 levels in the febrile and critical phases, were positive correlated to troponin T (r = 0.44, P < 0.001; r = 0.22, P = 0.03, respectively) and NT-proBNP (r = 0.21, P = 0.03; r = 0.35, P < 0.001). ROC analysis demonstrated sST2 as a good biomarker of severe dengue in the critical phase, AUROC 0.79, P < 0.001. Conclusion/Significance sST2 levels were elevated in patients with dengue especially in cases of severe dengue. Furthermore, increased sST2 levels were associated with cardiac indicators suggesting lower cardiac performance. While further research is needed to demonstrate its clinical utility, sST2 may be a useful prognostic biomarker of severe dengue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.