There is a tight interaction of the bone and the immune system. However, little is known about the relevance of the complement system, an important part of innate immunity and a crucial trigger for inflammation. The aim of this study was, therefore, to investigate the presence and function of complement in bone cells including osteoblasts, MSC and osteoclasts. qRT-PCR and immunostaining revealed that the central complement receptors C3aR and C5aR, complement C3 and C5, and membrane-bound regulatory proteins CD46, CD55, and CD59 were expressed in human mesenchymal stem cells, osteoblasts, and osteoclasts. Furthermore, osteoblasts and particularly osteoclasts were able to activate complement by cleaving C5 to its active form C5a as measured by ELISA. Both C3a and C5a alone were unable to trigger the release of inflammatory cytokines interleukin (IL)-6 and IL-8 from osteoblasts. However, co-stimulation with the proinflammatory cytokine IL-1β significantly induced IL-6 and IL-8 expression as well as the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG) indicating that complement may modulate the inflammatory response of osteoblastic cells in a pro-inflammatory environment as well as osteoblast-osteoclast interaction. While C3a and C5a did not affect osteogenic differentiation, osteoclastogenesis was significantly induced even in the absence of RANKL and macrophage-colony stimulating factor (M-CSF) suggesting that complement could directly regulate osteoclast formation. It can therefore be proposed that complement may enhance the inflammatory response of osteoblasts and increase osteoclast formation, particularly in a pro-inflammatory environment, for example during bone healing or in inflammatory bone disorders.
The S143F lamin A/C point mutation causes a phenotype combining features of myopathy and progeria. We demonstrate here that patient dermal fibroblast cells have dysmorphic nuclei containing numerous blebs and lobulations, which progressively accumulate as cells age in culture. The lamin A/C organization is altered, showing intranuclear and nuclear envelope (NE) aggregates and presenting often a honeycomb appearance. Immunofluorescence microscopy showed that nesprin-2 C-terminal isoforms and LAP2alpha were recovered in the cytoplasm, whereas LAP2beta and emerin were unevenly localized along the NE. In addition, the intranuclear organization of acetylated histones, histone H1 and the active form of RNA polymerase II were markedly different in patient cells. A subpopulation of mutant cells, however, expressing the 800 kDa nesprin-2 giant isoform, did not show an overt nuclear phenotype. Ectopic expression of p.S143F lamin A in fibroblasts recapitulates the patient cell phenotype, whereas no effects were observed in p.S143F LMNA keratinocytes, which highly express nesprin-2 giant. Overexpression of the mutant lamin A protein had a more severe impact on the NE of nesprin-2 giant deficient fibroblasts when compared with wild-type. In summary, our results suggest that the p.S143F lamin A mutation affects NE architecture and composition, chromatin organization, gene expression and transcription. Furthermore, our findings implicate a direct involvement of the nesprins in laminopathies and propose nesprin-2 giant as a structural reinforcer at the NE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.