Magnetotactic bacteria (MTB) represent a group of diverse motile prokaryotes that biomineralize magnetosomes, the organelles responsible for magnetotaxis. Magnetosomes consist of intracellular, membrane-bounded, tens-of-nanometre-sized crystals of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4) and are usually organized as a chain within the cell acting like a compass needle. Most information regarding the biomineralization processes involved in magnetosome formation comes from studies involving Alphaproteobacteria species which biomineralize cuboctahedral and elongated prismatic crystals of magnetite. Many magnetosome genes, the mam genes, identified in these organisms are conserved in all known MTB. Here we present a comparative genomic analysis of magnetotactic Deltaproteobacteria that synthesize bullet-shaped crystals of magnetite and/or greigite. We show that in addition to mam genes, there is a conserved set of genes, designated mad genes, specific to the magnetotactic Deltaproteobacteria, some also being present in Candidatus Magnetobacterium bavaricum of the Nitrospirae phylum, but absent in the magnetotactic Alphaproteobacteria. Our results suggest that the number of genes associated with magnetotaxis in magnetotactic Deltaproteobacteria is larger than previously thought. We also demonstrate that the minimum set of mam genes necessary for magnetosome formation in Magnetospirillum is also conserved in magnetite-producing, magnetotactic Deltaproteobacteria. Some putative novel functions of mad genes are discussed.
Magnetotactic bacteria (MTB) are a phylogenetically diverse group which uses intracellular membrane-enclosed magnetite crystals called magnetosomes for navigation in their aquatic habitats. Although synthesis of these prokaryotic organelles is of broad interdisciplinary interest, its genetic analysis has been restricted to a few closely related members of the Proteobacteria, in which essential functions required for magnetosome formation are encoded within a large genomic magnetosome island. However, because of the lack of cultivated representatives from other phyla, it is unknown whether the evolutionary origin of magnetotaxis is monophyletic, and it has been questioned whether homologous mechanisms and structures are present in unrelated MTB. Here, we present the analysis of the uncultivated "Candidatus Magnetobacterium bavaricum" from the deep branching Nitrospira phylum by combining micromanipulation and whole genome amplification (WGA) with metagenomics. Target-specific sequences obtained by WGA of cells, which were magnetically collected and individually sorted from sediment samples, were used for PCR screening of metagenomic libraries. This led to the identification of a genomic cluster containing several putative magnetosome genes with homology to those in Proteobacteria. A variety of advanced electron microscopic imaging tools revealed a complex cell envelope and an intricate magnetosome architecture. The presence of magnetosome membranes as well as cytoskeletal magnetosome filaments suggests a similar mechanism of magnetosome formation in "Cand. M. bavaricum" as in Proteobacteria. Altogether, our findings suggest a monophyletic origin of magnetotaxis, and relevant genes were likely transferred horizontally between Proteobacteria and representatives of the Nitrospira phylum.M agnetotactic bacteria (MTB) are widespread aquatic microorganisms that use unique intracellular organelles called magnetosomes to navigate along the earth's magnetic field while searching for growth-favoring microoxic zones within stratified sediments. In strains of Magnetospirillum, it was shown that magnetosomes consist of magnetite (Fe 3 O 4 ) crystals enclosed by a dedicated phospholipid membrane. The magnetosome membrane (MM) contains a specific set of proteins (1-3), which direct the biomineralization of highly ordered crystals along actin-like cytoskeletal filaments that control the assembly and intracellular positioning of a linear magnetosome chain (4-7). Synthesis of magnetosomes has recently emerged as a model for prokaryotic organelle formation and biomineralization (8-11). The trait of magnetotaxis is widely spread among Proteobacteria including members from the α-, δ-and γ-subdivisions, as well as uncultivated species from the deep branching Nitrospira phylum (8). The presence of MTB within unrelated lines of various phylogenetic groups, as well as their stunning diversity with respect to magnetosome shape, composition, and intracellular organization lead to speculations of whether the evolutionary origin of magnetota...
Magnetotactic bacteria (MTB) are a diverse group of prokaryotes that orient along magnetic fields using membrane-coated magnetic nanocrystals of magnetite (Fe(3) O(4) ) or greigite (Fe(3) S(4) ), the magnetosomes. Previous phylogenetic analysis of MTB has been limited to few cultivated species and most abundant members of natural populations, which were assigned to Proteobacteria and the Nitrospirae phyla. Here, we describe a single cell-based approach that allowed the targeted phylogenetic and ultrastructural analysis of the magnetotactic bacterium SKK-01, which was low abundant in sediments of Lake Chiemsee. Morphologically conspicuous single cells of SKK-01 were micromanipulated from magnetically collected multi-species MTB populations, which was followed by whole genome amplification and ultrastructural analysis of sorted cells. Besides intracellular sulphur inclusions, the large ovoid cells of SKK-01 harbour ∼175 bullet-shaped magnetosomes arranged in multiple chains that consist of magnetite as revealed by TEM and EDX analysis. Sequence analysis of 16 and 23S rRNA genes from amplified genomic DNA as well as fluorescence in situ hybridization assigned SKK-01 to the candidate division OP3, which so far lacks any cultivated representatives. SKK-01 represents the first morphotype that can be assigned to the OP3 group as well as the first magnetotactic member of the PVC superphylum.
'Candidatus Magnetobacterium bavaricum' is unusual among magnetotactic bacteria (MTB) in terms of cell size (8-10 µm long, 1.5-2 µm in diameter), cell architecture, magnetotactic behaviour and its distinct phylogenetic position in the deep-branching Nitrospira phylum. In the present study, improved magnetic enrichment techniques permitted high-resolution scanning electron microscopy and energy dispersive X-ray analysis, which revealed the intracellular organization of the magnetosome chains. Sulfur globule accumulation in the cytoplasm point towards a sulfur-oxidizing metabolism of 'Candidatus M. bavaricum'. Detailed analysis of 'Candidatus M. bavaricum' microhabitats revealed more complex distribution patterns than previously reported, with cells predominantly found in low oxygen concentration. No correlation to other geochemical parameters could be observed. In addition, the analysis of a metagenomic fosmid library revealed a 34 kb genomic fragment, which contains 33 genes, among them the complete rRNA gene operon of 'Candidatus M. bavaricum' as well as a gene encoding a putative type IV RubisCO large subunit.
Horizontal gene transfer (HGT), the transfer of genetic material other than by descent, is thought to have played significant roles in the evolution and distribution of genes in prokaryotes. These include those responsible for the ability of motile, aquatic magnetotactic bacteria (MTB) to align and swim along magnetic field lines and the biomineralization of magnetosomes that are responsible for this behaviour. There is some genomic evidence that HGT might be responsible for the distribution of magnetosome genes in different phylogenetic groups of bacteria. For example, in the genomes of a number of MTB, magnetosome genes are present as clusters within a larger structure known as the magnetosome genomic island surrounded by mobile elements such as insertion sequences and transposases as well as tRNA genes. Despite this, there is no strong direct proof of HGT between these organisms. Here we show that a phylogenetic tree based on magnetosome protein amino acid sequences from a number of MTB was congruent with the tree based on the organisms' 16S rRNA gene sequences. This shows that evolution and divergence of these proteins and the 16S rRNA gene occurred similarly. This suggests that magnetotaxis originated monophyletically in the Proteobacteria phylum and implies that the common ancestor of all Proteobacteria was magnetotactic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.