Metal complexes with peptide or pseudopeptide type ligands can serve as good model compounds for a deeper understanding of enzymatic catalysis, but ligands with a high selectivity for different transition metal cations are hard to find due to the rather flexible nature of peptides. Since such ligands would be the sine qua non condition for the synthesis of heterodinuclear peptide metal complexes with catalytic activity, the search for small, affine and selective metal chelating sequences is of interest. Using four different amino acids (His, Lys, Asp, Glu) a set of 16 pseudotripeptides of the common structure Bz-AS1-Sar-AS2-NH2 has been synthesized, purified and characterized by mass spectrometry and 1H-NMR. Their ability to form metal complexes has been investigated leading to short motifs capable of selectively binding only one or two transition metal cations with high affinity. As expected, the complexation of transition metal cations by pseudotripeptides is strongly dependent not only on the amino acid composition, but also on the sequence with regard to the stability of the resulting complexes, as well as the selectivity of the ligands towards Cu2+, Co2+, Ni2+, Zn2+ and Mn2+.
SummaryTo obtain more insight into catalytic mechanisms of metallo enzymes and specific metal complexation by proteins we use linear and cyclic pseudopeptides as mimetics. Knowledge about tendencies of complex formation of different ligands with selected transition metal ions is an indispensable prerequisite for the development of homoand hetero-dinuclear metallo enzyme mimetics. Three pseudotripeptide ligands were investigated with respect to formation tendency and properties of complexes with the transition metal ions Cu 2+, Zn 2+, Ni 2+, Co 2+ and Mn 2+. To study complexation tendencies we applied different methods. One of the important prerequisites for the application in a screening of series of peptide ligands is the necessity for a minimal amount of substance. We used and compared certain masspectrometric methods for the estimation of a rank order of complexation of certain transition metal ions. We also applied spectrophotometric titration, circular dichroism measurements, capillary electrophoresis and pH-rate profile of catalytic activity in the attempt to evaluate complex formation tendencies. Except for the spectrophotometric pH-titration and the pH-profile of catalytic activity all methods were applicable, but each method has its advantages and disadvantages depending on the separation effect of the ligand from the metal complex, and depending on the spectroscopic properties of ligand and complex. The results regarding complex formation are compared to each other. Comparison of pairs by MALDI-TOF-and ESI-MS allows an estimation of the rank order of complexation tendency of one ligand with different metal ions and requires the least amount of substance. The other investigated methods provided additional information on structural properties of the formed complexes; however either they required too much pseudopeptide ligand or were not applicable for all transition metal ions used in this study.
SummaryPseudotripeptide ligands with 4 different N-functionalized glycine residues were qualitatively, semiquantitatively and quantitatively tested for their complexation of the bivalent transition metal ions Zn 2+, Cu 2+, Co 2+, Ni 2+ and Mn 2+. The functional side chains have different length and different groups available for complexation. MALDI-MS and ESI-MS were used for more qualitative or semiquantitative estimation of the complex formation tendencies. The found ranking differs by these two methods only for Zn 2+ and Ni 2+. For one of the pseudotripeptide ligands, the ligand L1, complex formation with certain transition metal was estimated quantitatively by potentiometric titration. The Zn-complex of that ligand polarizes bound water strongly, resulting in a low pKa-value. Complexes of pseudotripeptide ligand L1 with certain metal ions were tested for their hydrolytic activity. The pseudo first order rate constants of the hydrolysis of the substrates 4-nitrophenyl acetate and bis(4-nitrophenyl)phosphate were compared to complexes with the same metal ions formed with a very well studied ligand from the literature, the 1,4,7,10-tetraaza cyclododecane (cyclen). The hydrolysis of the phosphate ester occurs very slowly compared to the acetate ester. No correlation exists between the estimated pKa values of complexes formed from ligand L1 with different metal ions and the phosphate ester hydrolysis. The Ni ions give totally different hydrolytic activities for pseudotripeptide ligand L1 and cyclen. With one exception, the Ni-cyclen complex, all other complexes have only a low or moderate catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.