We build on the evidence provided by our Legacy Survey of Galactic globular clusters (GC) to submit to a crucial test four scenarios currently entertained for the formation of multiple stellar generations in GCs. The observational constraints on multiple generations to be fulfilled are manifold, including GC specificity, ubiquity, variety, predominance, discreteness, supernova avoidance, p-capture processing, helium enrichment and mass budget. We argue that scenarios appealing to supermassive stars, fast rotating massive stars and massive interactive binaries violate in an irreparable fashion two or more among such constraints. Also the scenario appealing to AGB stars as producers of the material for next generation stars encounters severe difficulties, specifically concerning the mass budget problem and the detailed chemical composition of second generation stars. We qualitatively explore ways possibly allowing one to save the AGB scenario, specifically appealing to a possible revision of the cross section of a critical reaction rate destroying sodium, or alternatively by a more extensive exploration of the vast parameter space controlling the evolutionary behavior of AGB stellar models. Still, we cannot ensure success for these efforts and totally new scenarios may have to be invented to understand how GCs formed in the early Universe.
With the NEOWISE portion of the Wide-field Infrared Survey Explorer (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 µm, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The survey's uniform sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981±19 NEAs larger than 1 km and 20,500±3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32±0.14 below 1.5 km. This power law slope produces ∼ 13, 200±1,900 NEAs with D >140 m. Although previous studies predict another break in the cumulative size distribution below D ∼50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100-1000 m is lower than previous estimates. The numbers of near-Earth comets and potentially hazardous NEOs will be the subject of future work.Road,
As part of a major program to use isolated Local Group dwarf galaxies as near-field probes of cosmology, we have obtained deep images of the dwarf irregular galaxy Leo A with the Advanced Camera for Surveys aboard the Hubble Space Telescope. From these images we have constructed a color-magnitude diagram (CMD) reaching apparent [absolute] magnitudes of (M 475 , M 814 ) (29.0 [+4.4], 27.9 [+3.4]), the deepest ever achieved for any irregular galaxy beyond the Magellanic Clouds. We derive the star-formation rate (SFR) as a function of time over the entire history of the galaxy. We find that over 90% of all the star formation that ever occurred in Leo A happened more recently than 8 Gyr ago. The CMD shows only a very small amount of star formation in the first few billion years after the Big Bang; a possible burst at the oldest ages cannot be claimed with high confidence.The peak SFR occurred ≈1.5-4 Gyr ago, at a level 5-10 times the current value. Our modelling indicates that Leo A has experienced very little metallicity evolution; the mean inferred metallicity is consistent with measurements of the present-day gas-phase oxygen abundance. We cannot exclude a scenario in which all of the ancient star formation occurred prior to the end of the era of reionization, but it seems unlikely that the lack of star formation prior to ≈8 Gyr ago was due to early loss or exhaustion of the in situ gas reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.