Pasture-based production systems represent a significant sustainable supplier of animal source foods worldwide. For such systems, mounting evidence highlights the importance of plant diversity on the proper functioning of soils, plants and animals. A diversity of forages and biochemicals -primary and secondary compounds-at appropriate doses and sequences of ingestion, may lead to benefits to the animal and their environment that are greater than grazing monocultures and the isolated effects of single chemicals.Here we review the importance of plant and phytochemical diversity on animal nutrition, welfare, health, and environmental impact while exploring some novel ideas about pasture design and management based on the biochemical complexity of traditional and non-traditional forage sources. Such effort will require an integration and synthesis on the morphology, ecophysiology, and biochemistry of traditional and non-traditional forage species, as well as on the foraging behavior of livestock grazing diverse pasturelands. Thus, the challenge ahead entails selecting the "right" species combination, spatial aggregation, distribution and management of the forage resource such that productivity and stability of plant communities and ecological services provided by grazing are enhanced. We conclude that there is strong experimental support for replacing simple traditional agricultural pastures of reduced phytochemical diversity with multiple arrays of complementary forage species that enable ruminants to select a diet in benefit of their nutrition, health and welfare, whilst reducing the negative environmental impacts caused by livestock production systems.
Greenhouse gas emissions from ruminant livestock production systems contribute significantly to the environmental footprint of agriculture. Emissions are lower for feedlot systems than for grass-based systems primarily because of the extra time required for grass-finished cattle to reach slaughter weight. In contrast, legume forages are of greater quality than grasses, which enhances intake and food conversion efficiencies, leading to improvements in production and reductions in environmental impacts compared with forage grasses. In addition, the presence of certain bioactives in legumes such as condensed tannins (CT) enhance the efficiency of energy and protein use in ruminants relative to grasses and other feeds and forages. Grazing tannin-containing legumes also reduce the incidence of bloat and improve meat quality. Synergies among nutrients and bioactives when animals graze diverse legume pastures have the potential to enhance these benefits. Thus, a diversity of legumes in feeding systems may lead to more economically, environmentally, and socially sustainable beef production than grass monocultures or feedlot rations.
Diverse combinations of forages with different nutrient profiles and plant secondary compounds may improve intake and nutrient utilization by ruminants. We tested the influence of diverse dietary combinations of tannin- (sainfoin-Onobrichis viciifolia; birdsfoot trefoil-Lotus corniculatus) and non-tannin- (alfalfa-Medicago sativa L.) containing legumes on intake and diet digestibility in lambs. Freshly cut birdsfoot trefoil, alfalfa, and sainfoin were offered in ad libitum amounts to 42 lambs in individual pens assigned to 7 treatments (6 animals/treatment): 1) single forage species (sainfoin [SF], birdsfoot trefoil [BFT], and alfalfa [ALF]), 2) all possible 2-way choices of the 3 forage species (alfalfa-sainfoin [ALF-SF], alfalfa-birdsfoot trefoil [ALF-BFT], and sainfoin-birdsfoot trefoil [SF-BFT]), or 3) a choice of all 3 forages (alfalfa-sainfoin-birdsfoot trefoil [ALF-SF-BFT]). Dry matter intake (DMI) was greater in ALF than in BFT (P = 0.002), and DMI in SF tended to be greater than in BFT (P = 0.053). However, when alfalfa was offered in a choice with either of the tannin-containing legumes (ALF-SF; ALF-BFT), DMI did not differ from ALF, whereas DMI in SF-BFT did not differ from SF (P > 0.10). When lambs were allowed to choose between 2 or 3 legume species, DMI was greater (36.6 vs. 33.2 g/kg BW; P = 0.038) or tended to be greater (37.4 vs. 33.2 g/kg BW; P = 0.067) than when lambs were fed single species, respectively. Intake did not differ between 2- or 3-way choice treatments (P = 0.723). Lambs preferred alfalfa over the tannin-containing legumes in a 70:30 ratio for 2-way choices, and alfalfa > sainfoin > birdsfoot trefoil in a 53:33:14 ratio for the 3-way choice. In vivo digestibility (DMD) was SF > BFT (72.0% vs. 67.7%; P = 0.012) and DMD in BFT tended to be greater than in ALF (64.6%; P = 0.061). Nevertheless, when alfalfa was offered in a choice with either sainfoin or birdsfoot trefoil (ALF-SF; ALF-BFT), DMD was greater than ALF (P < 0.001 and P = 0.007, respectively), suggesting positive associative effects. The SF treatment had lower blood urea nitrogen and greater fecal N/N intake ratios than the ALF, BFT, or ALF-BFT treatments (P < 0.05), implying a shift in the site of N excretion from urine to feces. In conclusion, offering diverse combinations of legumes to sheep enhanced intake and diet digestibility relative to feeding single species, while allowing for the incorporation of beneficial bioactive compounds like condensed tannins into the diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.