Abstract. The European Academy of Wind Energy (eawe), representing universities and institutes with a significant wind energy programme in 14 countries, has discussed the long-term research challenges in wind energy. In contrast to research agendas addressing short-to medium-term research activities, this eawe document takes a longer-term perspective, addressing the scientific knowledge base that is required to develop wind energy beyond the applications of today and tomorrow. In other words, this long-term research agenda is driven by problems and curiosity, addressing basic research and fundamental knowledge in 11 research areas, ranging from physics and design to environmental and societal aspects. Because of the very nature of this initiative, this document does not intend to be permanent or complete. It shows the vision of the experts of the eawe, but other views may be possible. We sincerely hope that it will spur an even more intensive discussion worldwide within the wind energy community.
Renewable energy sources are key enablers to decrease greenhouse gas emissions and to cope with the anthropogenic global warming. Their intermittent behaviour and limited storage capabilities present challenges to power system operators in maintaining the high level of power quality and reliability. However, the increased availability of advanced automation and communication technologies has provided new intelligent solutions to face these challenges. Previous work has presented various new methods to operate highly interconnected power grids with corresponding components in a more effective way. As a consequence of these developments the traditional power system is transformed into a cyber-physical system, a smart grid.Previous and ongoing research activities have mainly focused on validating certain aspects of smart grids, but until now no integrated approach for analysing and evaluating complex configurations in a cyber-physical systems manner is available. This paper tackles this issue and addresses system validation approaches for smart grids. Different approaches for different stages in the design, development, and roll-out phase of smart grid solutions and components are discussed. Finally, future research directions are analysed.Keywords: smart grid; simulation; hardware-in-the-loop; research; infrastructure; education; training IntroductionEnergy efficiency and low-carbon technologies are key enablers to mitigate the increasing emission of green-house gases still resulting in a global warming trend [1]. The efforts to reduce greenhouse gas emissions also strongly affect the power system. Renewable sources, storage systems and flexible loads provide enhanced possibilities but power system operators and utilities have to cope with their fluctuating nature, limited storage capabilities and the typically higher complexity of the whole infrastructure with a growing amount of heterogeneous components [2]. Additionally, due to changing framework conditions, like the liberalization of the energy markets and new regulatory rules, as well as technology developments (e.g., new components), approaches for design, planning, and operation of the future electric energy system have to be restructured. Sophisticated component design methods, intelligent information and communication architectures, automation and control concepts as well as proper standards are necessary in order to manage the higher complexity of such intelligent power systems (i.e., smart grids) [3][4][5]. Besides technical challenges also economic, ecological and social issues have to be addressed in smart grid research and innovation, too.During the last decade-especially in the past framework programs of the European Commission (i.e., FP6 and FP7)-a growing number of research and technology development activities have already been carried out in this area. Their main attempt was to fulfil the challenging goals and needs of the Strategic Energy Technology Plan (SET-Plan) of the European Commission for a sustainable environment and to foster the inno...
Smart grid systems are characterized by high complexity due to interactions between a traditional passive network and active power electronic components, coupled using communication links. Additionally, automation and information technology plays an important role in order to operate and optimize such cyber-physical energy systems with a high(er) penetration of fluctuating renewable generation and controllable loads. As a result of these developments the validation on the system level becomes much more important during the whole engineering and deployment process, today. In earlier development stages and for larger system configurations laboratory-based testing is not always an option. Due to recent developments, simulation-based approaches are now an appropriate tool to support the development, implementation, and rollout of smart grid solutions. This paper discusses the current state of simulation-based approaches and outlines the necessary future research and development directions in the domain of power and energy systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.