Multibeam maps and high-resolution seismic images from the Maldives reveal that a late Miocene to early Pliocene partial drowning of the platform was linked to strong sea-bottom currents. In the upper Miocene to Holocene, currents shaped the drowned banks, the current moats along the bank edges, and the submarine dune fi elds. Bottom currents in the Maldives are driven by the monsoon. It is proposed that the onset and the intensifi cation of the monsoon during the Neogene provoked platform drowning through injection of nutrients into surface waters. Since the late Miocene, topographically triggered nutrient upwelling and vigorous currents switched the Maldives atolls into an aggradational to backstepping mode, which is a growth pattern usually attributed to episodes of rising sea level.
Multichannel high‐resolution seismic and multibeam data were acquired from the Maldives‐isolated carbonate platform in the Indian Ocean for a detailed characterization of the Neogene bank architecture of this edifice. The goal of the research is to decipher the controlling factors of platform evolution, with a special emphasis on sea‐level changes and changes of the oceanic currents. The stacking pattern of Lower to Middle Miocene depositional sequences, with an evolution of a ramp geometry to a flat‐topped platform, reflects variations of accommodation, which here are proposed to be primarily governed by fluctuations of relative sea level. Easterly currents during this stage of bank growth controlled an asymmetric east‐directed progradation of the bank edge. During the late middle Miocene, this system was replaced by a twofold configuration of bank development. Bank growth continued synchronously with partial bank demise and associated sediment‐drift deposition. This turnover is attributed to the onset and/or intensification of the Indian monsoon and related upwelling and occurrence of currents, locally changing environmental conditions and impinging upon the carbonate system. Mega spill over lobes, shaped by reversing currents, formed as large‐scale prograding complexes, which have previously been interpreted as deposits formed during a forced regression. On a regional scale, a complex carbonate‐platform growth can occur, with a coexistence of bank‐margin progradation and aggradation, as well as partial drowning. It is further shown that a downward shift of clinoforms and offlapping geometries in carbonate platforms are not necessarily indicative for a sea‐level driven forced regression. Findings are expected to be applicable to other examples of Cenozoic platforms in the Indo‐Pacific region.
During the late Tortonian (upper Miocene), the Guadix Basin in S Spain formed one of the Betic corridors that connected the Mediterranean Sea with the Atlantic Ocean. The closure of this connection occurred in a series of steps, documented by three sedimentary units. A lower unit, consisting of basinal marls, shallowwater calcarenites and sands records the formation of a wide seaway. During deposition of the following unit this narrowed to a strait no more than 2 km in wide, triggering an intensification of currents that caused migration of submarine dunes preserved as giant crossbeds in bioclastic sands and conglomerates. Current flowed from the Mediterranean to the Atlantic. The third unit constitutes the youngest marine episode of the filling of the Guadix Basin. At this stage, the connection between the Mediterranean Sea and the Atlantic Ocean was broken, and a system of coastal coral reefs was established in the northern part of the Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.