Metabolic conditions affect the developmental tempo of most animal species. Consequently, developmental gene regulatory networks (GRNs) must faithfully adjust their dynamics to a variable time scale. We find evidence that layered weak repression of genes provides the necessary coupling between GRN output and cellular metabolism. Using a mathematical model that replicates such a scenario, we find that lowering metabolism corrects developmental errors that otherwise occur when different layers of repression are lost. Through mutant analysis, we show that gene expression dynamics are unaffected by loss of repressors, but only when cellular metabolism is reduced. We further show that when metabolism is lowered, formation of a variety of sensory organs in Drosophila is normal despite loss of individual repressors of transcription, mRNA stability, and protein stability. We demonstrate the universality of this phenomenon by experimentally eliminating the entire microRNA family of repressors, and find that all microRNAs are rendered unnecessary when metabolism is reduced. Thus, layered weak repression provides robustness through error frequency suppression, and may provide an evolutionary route to a shorter reproductive cycle. ! 2. CC-BY-ND 4.0 International license It is made available under a (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
Depletion-attraction induced adhesion of two giant (∼ 40 μm), charged multilamellar vesicles is studied using a new Cantilevered-Capillary Force Apparatus, developed in this laboratory. The specific goal of this work is to investigate the role of dynamics in the adhesion and de-adhesion processes when the vesicles come together or are pulled apart at a constant velocity. Hydrodynamic effects are found to play an important role in the adhesion and separation of vesicles at the velocities that are studied. Specifically, a period of hydrodynamically controlled drainage of the thin film between vesicles is observed prior to adhesion, and it is shown that the force required to separate a pair of tensed, adhering vesicles increases with increasing separation velocity and membrane tension. It is also shown that the work done to separate the vesicles increases with separation velocity, but exhibits a maximum as the membrane tension is varied.
Metabolic conditions affect the developmental tempo of most animal species. Consequently, developmental gene regulatory networks (GRNs) must faithfully adjust their dynamics to a variable time scale. We find evidence that layered weak repression of genes provides the necessary coupling between GRN output and cellular metabolism. Using a mathematical model that replicates such a scenario, we find that lowering metabolism corrects developmental errors that otherwise occur when different layers of repression are lost. Through mutant analysis, we show that gene expression dynamics are unaffected by loss of repressors, but only when cellular metabolism is reduced. We further show that when metabolism is lowered, formation of a variety of sensory organs in Drosophila is normal despite loss of individual repressors of transcription, mRNA stability, and protein stability. We demonstrate the universality of this phenomenon by experimentally eliminating the entire microRNA family of repressors, and find that all microRNAs are rendered unnecessary when metabolism is reduced. Thus, layered weak repression provides robustness through error frequency suppression, and may provide an evolutionary route to a shorter reproductive cycle.Reduced glucose consumption by cells might not only limit ATP fluxes, but also hinder the synthesis of nucleotide and amino acid precursors required for RNA and protein synthesis. To simulate this scenario, we specifically reduced the rate parameters ! 13 ! 14 ! 15 ! 16 ! 17
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.