Patients with sleep-disordered breathing show a combination of different respiratory events (central, obstructive, mixed), with one type being predominant. We observed a reduced prevalence of central apneic events (CAEs) during REM sleep compared to NREM sleep in patients with predominant obstructive sleep apnea (OSA). The aim of this retrospective, exploratory study was to describe this finding and to suggest pathophysiological explanations. The polysomnography (PSG) data of 141 OSA patients were assessed for the prevalence of CAEs during REM and NREM sleep. On the basis of the apnea–hypopnea index (AHI), patients were divided into three OSA severity groups (mild: AHI < 15/h; moderate: AHI = 15–30/h; severe: AHI > 30/h). We compared the frequency of CAEs adjusted for the relative length of REM and NREM sleep time, and a significantly increased frequency of CAEs in NREM was found only in severely affected OSA patients. Given that the emergence of CAEs is strongly associated with the chemosensitivity of the brainstem nuclei regulating breathing mechanics in humans, a sleep-stage-dependent chemosensitivity is proposed. REM-sleep-associated neuronal circuits in humans may act protectively against the emergence of CAEs, possibly by reducing chemosensitivity. On the contrary, a significant increase in the chemosensitivity of the brainstem nuclei during NREM sleep is suggested.
Respiratory arousals (RA) on polysomnography (PSG) are an important predictor of obstructive sleep apnea (OSA) disease severity. Additionally, recent reports suggest that more global indices of desaturation such as the hypoxic burden, namely the area under the curve (AUC) of the oxygen saturation (SaO2) PSG trace may better depict the desaturation burden in OSA. Here we investigated possible associations between a new metric, namely the AUC of the respiratory arousal electroencephalographic (EEG) recording, and already established parameters as the apnea/hypopnea index (AHI), arousal index and hypoxic burden in patients with OSA. In this data-driven study, polysomnographic data from 102 patients with OSAS were assessed (32 female; 70 male; mean value of age: 52 years; mean value of Body-Mass-Index-BMI: 31 kg/m2). The marked arousals from the pooled EEG signal (C3 and C4) were smoothed and the AUC was estimated. We used a support vector regressor (SVR) analysis to predict AHI, arousal index and hypoxic burden as captured by the PSG. The SVR with the arousal-AUC metric could quite reliably predict the AHI with a high correlation coefficient (0,58 in the training set, 0,65 in the testing set and 0,64 overall), as well as the hypoxic burden (0,62 in the training set, 0,58 in the testing set and 0,59 overall) and the arousal index (0,58 in the training set, 0,67 in the testing set and 0,66 overall). This novel arousal-AUC metric may predict AHI, hypoxic burden and arousal index with a quite high correlation coefficient and therefore could be used as an additional quantitative surrogate marker in the description of obstructive sleep apnea disease severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.