The importance and effect of Fc glycosylation of monoclonal antibodies with regard to biological activity is widely discussed and has been investigated in numerous studies. Fc glycosylation of monoclonal antibodies from current production systems is subject to batch-to-batch variability. If there are glycosylation changes between different batches, these changes are observed not only for one but multiple glycan species. Therefore, studying the effect of distinct Fc glycan species such as galactosylated and sialylated structures is challenging due to the lack of well-defined differences in glycan patterns of samples used. In this study, the influence of IgG1 Fc galactosylation and sialylation on its effector functions has been investigated using five different samples which were produced from one single drug substance batch by in vitro glycoengineering. This sample set comprises preparations with minimal and maximal galactosylation and different levels of sialylation of fully galactosylated Fc glycans. Among others, Roche developed the glycosyltransferase enzyme sialyltransferase which was used for the in vitro glycoengineering activities at medium scale. A variety of analytical assays, including Surface Plasmon Resonance and recently developed FcγR affinity chromatography, as well as an optimized cell-based ADCC assay were applied to investigate the effect of Fc galactosylation and sialylation on the in vitro FcγRI, IIa, and IIIa receptor binding and ADCC activity of IgG1. The results of our studies do not show an impact, neither positive nor negative, of sialic acid- containing Fc glycans of IgG1 on ADCC activity, FcγRI, and RIIIa receptors, but a slightly improved binding to FcγRIIa. Furthermore, we demonstrate a galactosylation-induced positive impact on the binding activity of the IgG1 to FcγRIIa and FcγRIIIa receptors and ADCC activity.
Aim: Fragment crystallizable (Fc) glycosylation of immunoglobulin G-type monoclonal antibodies applied to therapeutic applications is regarded a critical quality attribute and can influence bioactivity, pharmacokinetics and/or immunogenicity/safety. Investigating the impact of certain Fc N-glycans is therefore of importance to assess its criticality for a therapeutic product. This has been done for N-glycan types like fucosylation, galactosylation or sialylation. There were contradictory results reported for functionality especially with regard to sialylation. Material & methods: We elucidated the effect of terminal sialic acid residues on Fcγ receptor binding and antibody dependent cytotoxicity activity of two immunoglobulin G1 antibodies with different levels of fucosylation/bi-secting. Conclusion: We found the impact to be specific to the sialylation linkage type, in other words, α2,3- versus α2,6-linked sialic acid attached to the terminal galactose residues
The usefulness of higher-order structural information provided by hydrogen/deuterium exchange-mass spectrometry (H/DX-MS) for the structural impact analyses of chemical and post-translational antibody modifications has been demonstrated in various studies. However, the structure–function assessment for protein drugs in biopharmaceutical research and development is often impeded by the relatively low-abundance (below 5%) of critical quality attributes or by overlapping effects of modifications, such as glycosylation, with chemical amino acid modifications; e.g., oxidation or deamidation. We present results demonstrating the applicability of the H/DX-MS technique to monitor conformational changes of specific Fc glycosylation variants produced by in vitro glyco-engineering technology. A trend towards less H/DX in Fc Cγ2 domain segments correlating with larger glycan structures could be confirmed. Furthermore, significant deuterium uptake differences and corresponding binding properties to Fc receptors (as monitored by SPR) between α-2,3- and α-2,6-sialylated Fc glycosylation variants were verified at sensitive levels.
2020) Interaction analysis of glycoengineered antibodies with CD16a: a native mass spectrometry approach, mAbs, 12:1, 1736975, ABSTRACTMinor changes in the quality of biologically manufactured monoclonal antibodies (mAbs) can affect their bioactivity and efficacy. One of the most important variations concerns the N-glycosylation pattern, which directly affects an anti-tumor mechanism called antibody-dependent cell-meditated cytotoxicity (ADCC). Thus, careful engineering of mAbs is expected to enhance both protein-receptor binding and ADCC. The specific aim of this study is to evaluate the influence of terminal carbohydrates within the Fc region on the interaction with the FcγRIIIa/CD16a receptor in native and label-free conditions. The single mAb molecule comprises variants with minimal and maximal galactosylation, as well as α2,3 and α2,6-sialic acid isomers. Here, we apply native electrospray ionization mass spectrometry to determine the solution-phase antibody-receptor equilibria and by using temperature-controlled nanoelectrospray, a thermal stability of the complex is examined. Based on these, we prove that the galactosylation of a fucosylated Fc region increases the binding to CD16a 1.5-fold when compared with the nongalactosylated variant. The α2,6-sialylation has no significant effect on the binding, whereas the α2,3-sialylation decreases it 1.72-fold. In line with expectation, the galactoslylated and α2,6-sialylated mAb:CD16a complex exhibit higher thermal stability when measured in the temperature gradient from 20 to 50°C. The similar binding pattern is observed based on surface plasmon resonance analysis and immunofluorescence staining using natural killer cells. The results of our study provide new insight into N-glycosylation-based interaction of the mAb:CD16a complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.