In this paper, we develop possible realizations of pseudo-haptic feedback in teleoperation systems based on existing works for pseudo-haptic feedback in virtual reality and the intended applications. We derive four potential factors affecting the performance of haptic feedback (calculation operator, maximum displacement, offset force, and scaling factor), which are analyzed in three compliance identification experiments. First, we analyze the principle usability of pseudo-haptic feedback by comparing information transfer measures for teleoperation and direct interaction. Pseudo-haptic interaction yields well above-chance performance, while direct interaction performs almost perfectly. In order to optimize pseudo-haptic feedback, in the second study we perform a full-factorial experimental design with 36 subjects performing 6,480 trials with 36 different treatments. Information transfer ranges from 0.68 bit to 1.72 bit in a task with a theoretical maximum of 2.6 bit, with a predominant effect of the calculation operator and a minor effect of the maximum displacement. In a third study, short- and long-term learning effects are analyzed. Learning effects regarding the performance of pseudo-haptic feedback cannot be observed for single-day experiments. Tests over 10 days show a maximum increase in information transfer of 0.8 bit. The results show the feasibility of pseudo-haptic feedback for teleoperation and can be used as design basis for task-specific systems.
Background
Most currently used surgical robots have no force feedback; the next generation displays forces visually. A novel single-port robotic surgical system called FLEXMIN has been developed. Through an outer diameter of 38 mm, two instruments are teleoperated from a surgeon’s control console including true haptic force feedback. One additional channel incorporates a telescope, another is free for special instrument functions.
Methods
This randomized cross-over study analyzed the effect of haptic feedback on the application of intracorporeal forces. In a standardized experiment setup, the subjects had to draw circles with the surgical robot as gently as possible. The applied forces, the required time spans, and predefined error rates were measured.
Results
Without haptic feedback, the maximum forces (median/IQR) were 6.43 N/2.96 N. With haptic feedback, the maximum forces were lower (3.57 N/1.94 N, p < 0.001). Also, the arithmetic means of the force progression (p < 0.001) and their standard deviations (p < 0.001) were lower. Not significant were the shorter durations and lower error rates. No sequence effect of force or duration was detected. No characteristic learning or fatigue curve was observed.
Conclusions
In the experiment setup, the true haptic force feedback can reduce the applied intracorporeal robotic force to one-half when considering the aspects maximum, means, and standard deviation. Other test tasks are needed to validate the influence of force feedback on surgical efficiency and safety.
Miniaturized force/torque sensors are relevant components for robotic interaction with humans and unknown environments. This paper presents a disruptive manufacturing process for multiaxial force/torque sensors based on a Stewart-Gough platform. The deformation element consists of a hexapod geometry with six sensing elements with a total diameter of 9 mm. The sensor manufacturing process is divided into three steps: 1. Milling a planar arrangement of sensing elements out of a 2 mm steel (1.4301) plate, 2. applying twelve strain gauges in half-bridge configuration and 3. rolling the elements into a hexapod structure. The dimensions of the sensing elements are scalable to adjust the size and nominal measurement range of the sensor. The first prototype has a measuring range of 4 N and 66 mNm. The characterization of the sensor shows a maximal linearity and hysteresis error of 1.16 % and a cross-sensitivity smaller than 2.76 %.
Keywords
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.