Nanometer‐thick active metasurfaces (MSs) based on phase‐change materials (PCMs) enable compact photonic components, offering adjustable functionalities for the manipulation of light, such as polarization filtering, lensing, and beam steering. Commonly, they feature multiple operation states by switching the whole PCM fully between two states of drastically different optical properties. Intermediate states of the PCM are also exploited to obtain gradual resonance shifts, which are usually uniform over the whole MS and described by effective medium response. For programmable MSs, however, the ability to selectively address and switch the PCM in individual meta‐atoms is required. Here, simultaneous control of size, position, and crystallization depth of the switched phase‐change material (PCM) volume within each meta‐atom in a proof‐of‐principle MS consisting of a PCM‐covered Al–nanorod antenna array is demonstrated. By modifying optical properties locally, amplitude and light phase can be programmed at the meta‐atom scale. As this goes beyond previous effective medium concepts, it will enable small adaptive corrections to external aberrations and fabrication errors or multiple complex functionalities programmable on the same MS.
Adaptive metasurfaces (MSs) provide immense control over the phase, amplitude and propagation direction of electromagnetic waves. Adopting phase-change materials (PCMs) as an adaptive medium allows us to tune functionality of MSs at the meta-atom length scale providing full control over MS (re-)programmability. Recent experimental progress in the local switching of PCM-based MSs promises to revolutionize adaptive photonics. Novel possibilities open new challenges, one of which is a necessity to understand and be able to predict the phase transition behavior at the sub-micrometer scale. A meta-atom can be switched by a local deposition of heat using optical or electrical pulses. The deposited energy is strongly inhomogeneous and the resulting phase transition is spatially non-uniform. The drastic change of the material properties during the phase transition leads to time-dependent changes in the absorption rate and heat conduction near the meta-atom. These necessitate a self-consistent treatment of electromagnetic, thermal and phase transition processes. Here, a self-consistent multiphysics description of an optically induced phase transition in MSs is reported. The developed model is used to analyze local tuning of a perfect absorber. A detailed understanding of the phase transition at the meta-atom length scale will enable a purposeful design of programmable adaptive MSs.
ultra-thin equivalents, but may also introduce new functionalities (phase discontinuities, anomalous reflection, and refraction, etc.). [2,3] However, the shape of the wavefront is defined by the metasurface design, including material selection and geometry, and is fixed after fabrication. Active postfabrication control requires the tunability of the optical response of each metasurface element. [4,5] One common approach for active metasurfaces is to capitalize on the change of the material polarizabilityeither of the scatterer or its surroundings. This can be achieved, for example, by modulation of the charge density in doped semiconductors (e.g., GaAs) or graphene, [6] by changing the state of liquid crystals adjacent to metallic antennas, [7] or by including phase-transition (e.g., vanadium dioxide VO 2) [8-10] or phase-change [e.g., germanium antimony telluride (GeTe) x (Sb 2 Te 3) 1−x ] [11] materials in the metasurface. Mechanical tuning with stretchable substrates or actuators, [12] chemical reactions at the scatterers, [13] or enhanced optical nonlinearities [14] are other possible approaches for post-fabrication tunability. Phase-change materials (PCMs) are among the best-suited materials to provide tunability of metasurfaces due to the property contrast between their amorphous (A) and crystalline (C) phase. [15] In contrast to phase-transition materials (e.g., VO 2), PCMs feature non-volatile states and thus, no energy is needed to maintain the material properties. The structural change is accompanied with a refractive index change Δn = |n C − n A | Metasurfaces allow for the spatiotemporal variation of amplitude, phase, and polarization of optical wavefronts. Implementation of active tunability of metasurfaces promises compact flat optics capable of reconfigurable wavefront shaping. Phase-change materials (PCMs) are a prominent material class enabling reconfigurable metasurfaces due to their large refractive index change upon structural transition. However, commonly employed laser-induced switching of PCMs limits the achievable feature sizes and restricts device miniaturization. Thermal scanning-probe-induced local switching of the PCM germanium telluride is proposed to realize near-infrared metasurfaces with feature sizes far below what is achievable with diffraction-limited optical switching. The design is based on a planar multilayer and does not require fabrication of protruding resonators as commonly applied in the literature. Instead, it is numerically demonstrated that a broad-band tuning of perfect absorption can be realized by the localized tip-induced crystallization of the PCM. The spectral response of the metasurface is explained using resonance mode analysis and numerical simulations. To facilitate experimental realization, a theoretical description of the tip-induced crystallization employing multiphysics simulations is provided to demonstrate the great potential for fabricating compact reconfigurable metasurfaces. The concept can be applied not only for plasmonic sensing and spatial freq...
In order to effectively control the state of an active integrated photonic component based on chalcogenide phase change materials, an efficient microheater operating at low voltage is required. Here, we report on the design of a graphene based microheater. The proposed system contains two separate graphene layers between which the phase change material cell of Ge2Sb2Te5 is placed. Three distinct switching possibilities are explored, using only the bottom layer, only the top layer or both graphene layers. A detailed investigation of the heater parameters is performed to optimise switching performance. A self-consistent multiphysics simulation of the crystallization process in the phase change material cell is conducted demonstrating the switching capabilities of the proposed design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.