Aging is a complex biological process accompanied by a progressive decline in the physical function of the organism and an increased risk of age-related chronic diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. Studies have established that there exist nine hallmarks of the aging process, including (i) telomere shortening, (ii) genomic instability, (iii) epigenetic modifications, (iv) mitochondrial dysfunction, (v) loss of proteostasis, (vi) dysregulated nutrient sensing, (vii) stem cell exhaustion, (viii) cellular senescence, and (ix) altered cellular communication. All these alterations have been linked to sustained systemic inflammation, and these mechanisms contribute to the aging process in timing not clearly determined yet. Nevertheless, mitochondrial dysfunction is one of the most important mechanisms contributing to the aging process. Mitochondria is the primary endogenous source of reactive oxygen species (ROS). During the aging process, there is a decline in ATP production and elevated ROS production together with a decline in the antioxidant defense. Elevated ROS levels can cause oxidative stress and severe damage to the cell, organelle membranes, DNA, lipids, and proteins. This damage contributes to the aging phenotype. In this review, we summarize recent advances in the mechanisms of aging with an emphasis on mitochondrial dysfunction and ROS production.
Transcriptional coactivators play a key role in RNA polymerase II transcription and gene regulation. One of the most important transcriptional coactivators is the Mediator (MED) complex, which is an evolutionary conserved large multiprotein complex. MED transduces the signal between DNA-bound transcriptional activators (gene-specific transcription factors) to the RNA polymerase II transcription machinery to activate transcription. It is known that MED plays an essential role in ER-mediated gene expression mainly through the MED1 subunit, since estrogen receptor (ER) can interact with MED1 by specific protein–protein interactions; therefore, MED1 plays a fundamental role in ER-positive breast cancer (BC) etiology. Additionally, other MED subunits also play a role in BC etiology. On the other hand, microRNAs (miRNAs) are a family of small non-coding RNAs, which can regulate gene expression at the post-transcriptional level by binding in a sequence-specific fashion at the 3′ UTR of the messenger RNA. The miRNAs are also important factors that influence oncogenic signaling in BC by acting as both tumor suppressors and oncogenes. Moreover, miRNAs are involved in endocrine therapy resistance of BC, specifically to tamoxifen, a drug that is used to target ER signaling. In metazoans, very little is known about the transcriptional regulation of miRNA by the MED complex and less about the transcriptional regulation of miRNAs involved in BC initiation and progression. Recently, it has been shown that MED1 is able to regulate the transcription of the ER-dependent miR-191/425 cluster promoting BC cell proliferation and migration. In this review, we will discuss the role of MED1 transcriptional coactivator in the etiology of BC and in endocrine therapy-resistance of BC and also the contribution of other MED subunits to BC development, progression and metastasis. Lastly, we identified miRNAs that potentially can regulate the expression of MED subunits.
Breast cancer (BC), a heterogeneous, aggressive illness with high mortality, is essentially a genomic disease. While the high-penetrance genes BRCA1 and BRCA2 play important roles in tumorigenesis, moderate- and low-penetrance genes are also involved. Single-nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes have recently been identified as BC risk factors. miRNA genes are currently classified as low-penetrance. SNPs are the most common variations in the human genome. While the role of miRNA SNPs in BC susceptibility has been studied extensively, results have been inconsistent. This review analyzes the results of association studies between miRNA SNPs and BC risk from countries around the world. We conclude that: (a) By continent, the largest proportion of studies to date were conducted in Asia (65.0 %) and the smallest proportion in Africa (1.8 %); (b) Association studies have been completed for 67 different SNPs; (c) 146a, 196a2, 499, 27a, and 423 are the most-studied miRNAs; (d) The SNPs rs2910164 (miRNA-146a), rs11614913 (miRNA-196a2), rs3746444 (miRNA-499) and rs6505162 (miRNA-423) were the most widely associated with increased BC risk; (e) The majority of studies had small samples, which may affect the precision and power of the results; and (f) The effect of an SNP on BC risk depends on the ethnicity of the population. This review also discusses potential explanations for controversial findings.
Multi-subunit enzymes are protein biopolymers that are involved in many cellular processes. The enzyme that carries out the process of transcription of mRNAs is RNA polymerase II (RNAPII), which is a multi-subunit enzyme in eukaryotes. This protein biopolymer starts the transcription from specific sites and is positioned by transcription factors, which form a preinitiation complex (PIC) on gene promoters. To recognize and position the RNAPII and the transcription factors on the gene promoters are needed specific DNA sequences in the gene promoters, which are named promoter elements. Those gene promoter elements can vary and therefore several kinds of promoters exist, however, it appears that all promoters can use a similar pathway for PIC formation. Those pathways are discussed in this review. The in vitro transcribed mRNA can be used as vaccines to fight infectious diseases, e.g., in immunotherapy against cancer and in nanotechnology to deliver mRNA for a missing protein into the cell. We have outlined a procedure to produce an mRNA vaccine against the SARS-CoV-2 virus, which is the causing agent of the big pandemic, COVID-19, affecting human beings all over the world. The potential advantages of using eukaryotic RNAPII to synthetize large transcripts are outlined and discussed. In addition, we suggest a method to cap the mRNA at the 5′ terminus by using enzymes, which might be more effective than cap analogs. Finally, we suggest the construction of a future multi-talented RNAPII, which would be able to synthetize large mRNA and cap them in the test tube.
The interaction between malignant cells and the tumor microenvironment is critical for tumor progression, and the chemokine ligand/receptor axes play a crucial role in this process. The CXCR4/CXCL12 and CCR5/CCL5 axes, both related to HIV, have been associated with the early (epithelial–mesenchymal transition and invasion) and late events (migration and metastasis) of cancer progression. In addition, these axes can also modulate the immune response against tumors. Thus, antagonists against the receptors of these axes have been proposed in cancer therapy. Although preclinical studies have shown promising results, clinical trials are needed to include these drugs in the oncological treatment protocols. New alternatives for these antagonists, such as dual CXCR4/CCR5 antagonists or combined therapy in association with immunotherapy, need to be studied in cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.