The choice of codons can influence local translation kinetics during protein synthesis. Whether codon preference is linked to co-translational regulation of polypeptide folding remains unclear. Here, we derive a revised translational efficiency scale that incorporates the competition between tRNA supply and demand. Applying this scale to ten closely related yeasts, we uncover the evolutionary conservation of codon optimality in eukaryotes. This analysis reveals universal patterns of conserved optimal and nonoptimal codons, often in clusters, which associate with the secondary structure of the translated polypeptides independent of the levels of expression. Our analysis suggests an evolved function for codon optimality in regulating the rhythm of elongation to facilitate co-translational polypeptide folding, beyond its previously proposed role of adapting to the cost of expression. These findings establish how mRNA sequences are generally under selection to optimize the co-translational folding of corresponding polypeptides.
In eukaryotic cells a molecular chaperone network associates with translating ribosomes, assisting the maturation of emerging nascent polypeptides. Hsp70 is perhaps the major eukaryotic ribosome-associated chaperone and the first reported to bind cotranslationally to nascent chains. However, little is known about the underlying principles, and function of this interaction. Here, we use a sensitive and global approach to define the cotranslational substrate specificity of the yeast Hsp70 SSB. We find that SSB binds to a subset of nascent polypeptides whose intrinsic properties and slow translation rates hinder efficient cotranslational folding. The SSB-ribosome cycle and substrate recognition is modulated by its ribosome-bound co-chaperone RAC. Deletion of SSB leads to widespread aggregation of newly synthesized polypeptides. Thus, cotranslationally acting Hsp70 meets the challenge of folding the eukaryotic proteome by stabilizing its longer, more slowly translated, and aggregation prone nascent polypeptides.
Summary
TRiC/CCT is a highly conserved and essential chaperonin that uses ATP cycling to facilitate folding of approximately 10% of the eukaryotic proteome. This 1 MDa hetero-oligomeric complex consists of two stacked rings of eight paralogous subunits each. Previously proposed TRiC models differ substantially in their subunit arrangements and ring register. Here, we integrate chemical crosslinking, mass spectrometry and combinatorial modeling to reveal the definitive subunit arrangement of TRiC. In vivo disulfide mapping provided additional validation for the crosslinking-derived arrangement as the definitive TRiC topology. This subunit arrangement allowed the refinement of a structural model using existing X-ray diffraction data. The new structure explains all available crosslink experiments, provides a rationale for previously unexplained structural features and reveals a surprising asymmetry of charges within the chaperonin folding chamber.
Cells face a constant challenge as they produce new proteins. The newly synthesized polypeptides must be folded properly to avoid aggregation. If proteins do misfold, they must be cleared to ensure a functional and healthy proteome. Recent work is revealing the complex mechanisms that work cotranslationally to ensure protein quality control during biogenesis at the ribosome. Indeed, the ribosome is emerging as a central hub in coordinating these processes, particularly in sensing the nature of the nascent protein chain, recruiting protein folding and translocation components, and integrating mRNA and nascent chain quality control. The tiered and complementary nature of these decision-making processes confers robustness and fidelity to protein homeostasis during protein synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.