Creating quantum superposition states of bodies with increasing mass and complexity is an exciting and important challenge. Demonstrating such superpositions is vital for understanding how classical observations arise from the underlying quantum physics. Here, we discuss how recent progress in macromolecule interferometry can be combined with the state of the art in cluster physics to push the mass record for matter-wave interference with wide state separation by 3 to 4 orders of magnitude. We show how near-field interferometers in different configurations can achieve this goal for a wide range of particle materials with strongly varying properties. This universality will become important in advanced tests of wave function collapse and of other modifications of quantum mechanics, as well as in the search for light dark matter and in tests of gravity with composite quantum systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.