Alkyl radicals are prominent in combustion chemistry as they are formed by hydrocarbon decomposition or from a radical attack on hydrocarbons. Accurate determinations of the thermochemistry and kinetics of their unimolecular isomerization and decomposition reactions and related addition reactions of alkenes are therefore important in simulating the combustion chemistry of virtually all hydrocarbon fuels. In this work, a comprehensive potential energy surface (PES) for H ̇-atom addition to and abstraction from 1-and 2-pentene, and the subsequent C−C and C−H β-scission reactions, and H-atom transfer reactions has been considered. Thermochemical values for the species on the C ̇5H 11 PES were calculated as a function of temperature (298−2000 K), with enthalpies of formation determined using a network of isodesmic reactions. High-pressure limiting and pressure-dependent rate constants were calculated using the Rice-Ramsperger-Kassel-Marcus theory coupled with a one-dimensional master equation. As a validation of our theoretical results, hydrogen atomic resonance absorption spectrometry experiments were performed on the H ̇-atom addition and abstraction reactions of 1-and 2-pentene. By incorporating our calculations into a detailed chemical kinetic model (AramcoMech 3.0), excellent agreement with these experiments is observed. The theoretical results are further validated via a comprehensive series of simulations of literature data. Our a priori model is found to reproduce important absolute species concentrations and product ratios reported therein.
The shock tube technique was used to study the high temperature thermal decomposition of dimethyl carbonate, CH3OC(O)OCH3 (DMC). The formation of H-atoms was measured behind reflected shock waves by using atomic resonance absorption spectrometry (ARAS). The experiments span a T-range of 1053-1157 K at pressures ∼0.5 atm. The H-atom profiles were simulated using a detailed chemical kinetic mechanism for DMC thermal decomposition. Simulations indicate that the formation of H-atoms is sensitive to the rate constants for the energetically lowest-lying bond fission channel, CH3OC(O)OCH3 → CH3 + CH3OC(O)O [A], where H-atoms form instantaneously at high temperatures from the sequence of radical β-scissions, CH3OC(O)O → CH3O + CO2 → H + CH2O + CO2. A master equation analysis was performed using CCSD(T)/cc-pv∞z//M06-2X/cc-pvtz energetics and molecular properties for all thermal decomposition processes in DMC. The theoretical predictions were found to be in good agreement with the present experimentally derived rate constants for the bond fission channel (A). The theoretically derived rate constants for this important bond-fission process in DMC can be represented by a modified Arrhenius expression at 0.5 atm over the T-range 1000-2000 K as, kA(T) = 6.85 × 10(98)T (-24.239) exp(-65250 K/T) s(-1). The H-atom temporal profiles at long times show only minor sensitivity to the abstraction reaction, H + CH3OC(O)OCH3 → H2 + CH3OC(O)OCH2 [B]. However, H + DMC is an important fuel destruction reaction at high temperatures. Consequently, measurements of D-atom profiles using D-ARAS allowed unambiguous rate constant measurements for the deuterated analog of reaction B, D + CH3OC(O)OCH3 → HD + CH3OC(O)OCH2 [C]. Reaction C is a surrogate for H + DMC since the theoretically predicted kinetic isotope effect at high temperatures (1000 - 2000K) is close to unity, kC ≈ 1.2 kB. TST calculations employing CCSD(T)/cc-pv∞z//M06-2X/cc-pvtz energetics and molecular properties for reactions B and C are in good agreement with the experimental rate constants. The theoretical rate constants for these bimolecular processes can be represented by modified Arrhenius expressions over the T-range 500-2000 K as, kB(T) = 1.45 × 10(-19)T(2.827) exp(-3398 K/T) cm(3) molecule(-1) s(-1) and kC(T) = 2.94 × 10(-19)T(2.729) exp(-3215 K/T) cm(3) molecule(-1) s(-1).
Group additivity methods simplify the determination of thermodynamic properties of a wide range of chemically related species involved in detailed reaction schemes. In this paper, we expand Benson's group additivity method to organosilanes. Based on quantum‐chemical calculations, the thermodynamic data of 22 stable silicon‐organic species are calculated, presented in the form of NASA polynomials, and compared to the available experimental data. Based on this theoretical database, a complete set of 24 Si‐ and C‐atom‐centered, single‐bonded and nonradical group additivity values for enthalpy of formation, standard entropy, and heat capacity at temperatures from 200 to 4000 K is derived through unweighted multivariate linear regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.