Using quadrupole scan measurements we show laser-wakefield accelerated electrons to have a normalized transverse emittance of 0:21 þ0:01 À0:02 mm mrad at 245 MeV. We demonstrate a multishot and a single-shot method, the mean emittance values for both methods agree well. A simple model of the beam dynamics in the plasma density downramp at the accelerator exit matches the source size and divergence values inferred from the measurement. In the energy range of 245 to 300 MeV the normalized emittance remains constant.Laser-wakefield acceleration (LWFA) [1,2] can deliver ultrarelativistic electron beams in a compact setup with unique features [3][4][5][6]. It is receiving particular attention as a source or driver for ultrashort x-ray beams [7,8] and for its potential for realizing a tabletop free-electron laser (FEL) [9]. The electron bunch duration has recently been measured to be only a few femtoseconds long [10,11] which results in peak beam currents on the order of kiloamperes. An essential parameter for the performance of x-ray sources, FELs, or linear colliders is the transverse electron beam emittance. Previous emittance measurements of LWFA electron beams have used the pepperpot method [12][13][14] giving normalized emittances of $2:2 mm mrad with single shots down to the resolution limit of 1:1 mm mrad. As these measurements are not spectrally resolved, they rely on a low energy spread to give a meaningful normalized emittance. For LWFA beams which fluctuate in energy and energy spread, a simultaneous measurement of the spectrum is required. This technique is also limited to electron energies that can be sufficiently scattered by the pepper-pot mask; to date, measurements of a 508 MeV beam have been carried out [15]. Experiments characterizing the betatron radiation emitted by the electron beam while it is in the plasma suggest the beam size there to be & 1 m [16,17], which in combination with a divergence measurement give an estimated emittance of <0:5 mm mrad [18]. However, inferring the emittance from the electron beam size in the plasma and its downstream divergence in the vacuum can be unreliable as this neglects the plasma-vacuum density transition at the accelerator exit; here the decreasing strength of the plasma focusing forces result in an increase in beam size and decrease in divergence [13]. This publication reports on direct measurements of the emittance of LWFA electrons that are both energy resolved and that include the beam transport of the density downramp at the accelerator exit. This is achieved by analyzing their beam size around a focus using a quadrupole lens scan method [19].The transverse phase space of an electron beam is often specified using the Twiss parameters , , , and the natural emittance ". These parameters describe the volume and orientation of the particle distribution in phase space. The beam size at a particular position ðs 1 Þ is related to the Twiss parameters at s 0 by [20] ðs 1 Þ 2 ¼ M 2 11 ðs 0 Þ À2M 11 M 12 ðs 0 Þþ M 2 12 ðs 0 Þ: (1)Here M ij refers to the ij eleme...
Ion beams are relevant for radiobiological studies and for tumor therapy. In contrast to conventional accelerators, laser-driven ion acceleration offers a potentially more compact and cost-effective means of delivering ions for radiotherapy. Here, we show that by combining advanced acceleration using nanometer thin targets and beam transport, truly nanosecond quasi-monoenergetic proton bunches can be generated with a table-top laser system, delivering single shot doses up to 7 Gy to living cells. Although in their infancy, laser-ion accelerators allow studying fast radiobiological processes as demonstrated here by measurements of the relative biological effectiveness of nanosecond proton bunches in human tumor cells.
The application of quadrupole-devices with high field gradients and small apertures requires precise control over higher order multipole field components. We present a new scheme for performance control and tuning, which allows the illumination of most of the quadrupole-device aperture because of the reduction of higher order field components. Consequently, the size of the aperture can be minimized to match the beam size achieving field gradients of up to 500 T m −1 at good imaging quality. The characterization method based on a Hall probe measurement and a Fourier analysis was confirmed using the high quality electron beam at the Mainz Microtron MAMI.
The improvement of the energy spread, beam divergence, and pointing fluctuations are some of the main challenges currently facing the field of laser-wakefield acceleration of electrons. We address these issues by manipulating the electron beams after their generation using miniature magnetic quadrupole lenses with field gradients of $500 T=m. By imaging electron beams the spectral resolution of dipole magnet spectrometers can be significantly increased, resulting in measured energy spreads down to 1.0% rms at 190 MeV. The focusing of different electron energies demonstrates the tunability of the lens system and could be used to filter out off-target energies in order to reduce the energy spread even further. By collimating the beam, the shot-to-shot spatial stability of the beam is improved by a factor of 5 measured at a distance of 1 m from the source. Additionally, by deliberately transversely offsetting a quadrupole lens, the electron beam can be steered in any direction by several mrad. These methods can be implemented while still maintaining the ultrashort bunch duration and low emittance of the beam and, except for undesired electron energies in the energy filter, without any loss of charge. This reliable and compact control of laser-wakefield accelerated electron beams is independent of the accelerator itself, allowing immediate application of currently available beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.