The role of vision in implicit and explicit processes involved in adaptation to novel visuomotor transformations is not well-understood. We manipulated subjects' gaze locations through instructions during a visuomotor rotation task that established a conflict between implicit and explicit processes. Subjects were informed of a rotated visual feedback (45° counterclockwise from the desired target) and instructed to counteract it by using an explicit aiming strategy to the neighboring target (45° clockwise from the target). Simultaneously, they were instructed to gaze at either the desired target (target-gaze group), the neighboring target (hand-target-gaze group), or anywhere (free-gaze group) during aiming. After initial elimination of behavioral errors caused by strategic aiming, the subjects gradually overcompensated the rotation in the early practice, thereby increasing behavioral errors (i.e., a drift). This was caused by an implicit adaptation overriding the explicit strategy. Notably, prescribed gaze locations did not affect this implicit adaptation. In the late practice, the target-gaze and free-gaze groups reduced the drift, whereas the hand-target-gaze group did not. Furthermore, the free-gaze group changed gaze locations for strategic aiming through practice from the neighboring target to the desired target. The onset of this change was correlated with the onset of the drift reduction. These results suggest that gaze locations critically affect explicit adjustments of aiming directions to reduce the drift by taking into account the implicit adaptation that is occurring in parallel. Taken together, spatial eye-hand coordination that ties the gaze and the reach target influences the explicit process but not the implicit process.
This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task. Young adults made aiming movements to targets on a horizontal plane, while looking at the rotated feedback (cursor) of hand movements on a monitor. To vary the task difficulty, three rotation angles (30°, 75°, and 150°) were tested in three groups. All groups shortened hand movement time and trajectory length with practice. However, control strategies used were different among groups. The 30° group used proportionately more implicit adjustments of hand movements than other groups. The 75° group used more on-line feedback control, whereas the 150° group used explicit strategic adjustments. Regarding eye-hand coordination, timing of gaze shift to the target was gradually changed with practice from the late to early phase of hand movements in all groups, indicating an emerging gaze-anchoring behavior. Gaze locations prior to the gaze anchoring were also modified with practice from the cursor vicinity to an area between the starting position and the target. Reflecting various task difficulties, these changes occurred fastest in the 30° group, followed by the 75° group. The 150° group persisted in gazing at the cursor vicinity. These results suggest that the function of gaze control during visuomotor adaptation changes from a reactive control for exploring the relation between cursor and hand movements to a predictive control for guiding the hand to the task goal. That gaze-anchoring behavior emerged in all groups despite various control strategies indicates a generality of this adaptive pattern for eye-hand coordination in goal-directed actions.
This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task under the use of terminal visual feedback. Young adults made reaching movements to targets on a digitizer while looking at targets on a monitor where the rotated feedback (a cursor) of hand movements appeared after each movement. Three rotation angles (30°, 75° and 150°) were examined in three groups in order to vary the task difficulty. The results showed that the 30° group gradually reduced direction errors of reaching with practice and adapted well to the visuomotor rotation. The 75° group made large direction errors of reaching, and the 150° group applied a 180° reversal shift from early practice. The 75°and 150° groups, however, overcompensated the respective rotations at the end of practice. Despite these group differences in adaptive changes of reaching, all groups gradually adapted gaze directions prior to reaching from the target area to the areas related to the final positions of reaching during the course of practice. The adaptive changes of both hand and eye movements in all groups mainly reflected adjustments of movement directions based on explicit knowledge of the applied rotation acquired through practice. Only the 30° group showed small implicit adaptation in both effectors. The results suggest that by adapting gaze directions from the target to the final position of reaching based on explicit knowledge of the visuomotor rotation, the oculomotor system supports the limb-motor system to make precise preplanned adjustments of reaching directions during learning of visuomotor rotation under terminal visual feedback.
We previously examined adaptive changes of eye-hand coordination during learning of a visuomotor rotation. Gazes during reaching movements were initially directed to a feedback cursor in early practice, but were gradually shifted toward the target with more practice, indicating an emerging gaze anchoring behavior. This adaptive pattern reflected a functional change of gaze control from exploring the cursor-hand relation to guiding the hand to the task goal. The present study further examined the effects of hemispace and joint coordination associated with target directions on this behavior. Young adults performed center-out reaching movements to four targets with their right hand on a horizontal digitizer, while looking at a rotated visual feedback cursor on a computer monitor. To examine the effect of hemispace related to visual stimuli, two out of the four targets were located in the ipsilateral workspace relative to the hand used, the other two in the contralateral workspace. To examine the effect of hemispace related to manual actions, two among the four targets were related to reaches made in the ipsilateral workspace, the other two to reaches made in the contralateral workspace. Furthermore, to examine the effect of the complexity of joint coordination, two among the four targets were reaches involving a direct path from the start to the target involving elbow movements (simple), whereas the other two targets were reaches involving both shoulder and elbow movements (complex). The results showed that the gaze anchoring behavior gradually emerged during practice for reaches made in all target directions. The speed of this change was affected mainly by the hemispace related to manual actions, whereas the other two effects were minimal. The gaze anchoring occurred faster for the ipsilateral reaches than for the contralateral reaches; gazes prior to the gaze anchoring were also directed less at the cursor vicinity but more at the mid-area between the starting point and the target. These results suggest that ipsilateral reaches result in a better predictability of the cursor-hand relation under the visuomotor rotation, thereby prompting an earlier functional change of gaze control through practice from a reactive to a predictive control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.