Abstract. Roughness parameters that characterize contacting surfaces with regard to friction and wear are commonly stated without uncertainties, or with an uncertainty only taking into account a very limited amount of aspects such as repeatability of reproducibility (homogeneity) of the specimen. This makes it difficult to discriminate between different values of single roughness parameters.Therefore uncertainty assessment methods are required that take all relevant aspects into account. In the literature this is scarcely performed and examples specific for parameters used in friction and wear are not yet given.We propose a procedure to derive the uncertainty from a single profile employing a statistical method that is based on the statistical moments of the amplitude distribution and the autocorrelation length of the profile. To show the possibilities and the limitations of this method we compare the uncertainty derived from a single profile with that derived from a high statistics experiment.
Standard compliant parameter calculation in surface topography analysis takes the manufacturing process into account. Thus, the measurement technician can be supported with automated suggestions for preprocessing, filtering and evaluation of the measurement data based on the character of the surface topography. Artificial neuronal networks (ANN) are one approach for the recognition or classification of technical surfaces. However the required set of training data for ANN is often not available, especially when data acquisition is time consuming or expensive-as e.g., measuring surface topography. Thus, generation of artificial (simulated) data becomes of interest. An approach from time series analysis is chosen and examined regarding its suitability for the description of technical surfaces: the ARMAsel model, an approach for time series modelling which is capable of choosing the statistical model with the smallest prediction error and the best number of coefficients for a certain surface. With a reliable model which features the relevant stochastic properties of a surface, a generation of training data for classifiers of artificial neural networks is possible. Based on the determined ARMA-coefficients from the ARMAsel-approach, with only few measured datasets many different artificial surfaces can be generated which can be used for training classifiers of an artificial neural network. In doing so, an improved calculation of the model input data for the generation of artificial surfaces is possible as the training data generation is based on actual measurement data. The trained artificial neural network is tested with actual measurement data of surfaces that were manufactured with varying manufacturing methods and a recognition rate of the according manufacturing principle between 60% and 78% can be determined. This means that based on only few measured datasets, stochastic surface information of various manufacturing principles can be extracted in a way that a distinction of these surfaces is possible by an ANN. The ARMAsel approach is proven to provide the relevant stochastic information for the training of the ANN with artificially generated lapped, reamed, ground, horizontally milled, milled and turned surface profiles.
Training of neural networks requires large amounts of data. Simulated data sets can be helpful if the data required for the training is not available. However, the applicability of simulated data sets for training neuronal networks depends on the quality of the simulation model used. A simple and fast approach for the simulation of ground and honed surfaces with predefined properties is being presented. The approach is used to generate a diverse data set. This set is then applied to train a neural convolution network for surface type recognition. The resulting classifier is validated on the basis of a series of real measurement data and a classification rate of >85% is achieved. A possible field of application of the presented procedure is the support of measurement technicians in the standard-compliant evaluation of measurement data by suggestion of specific data processing steps, depending on the recognized type of manufacturing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.