The layered van der Waals antiferromagnet MnBi2Te4 has been predicted to combine the band ordering of archetypical topological insulators like Bi2Te3 with the magnetism of Mn, making this material a viable candidate for the realization of various magnetic topological states. We have systematically investigated the surface electronic structure of MnBi2Te4(0001) single crystals by use of spin-and angle-resolved photoelectron spectroscopy (ARPES) experiments. In line with theoretical predictions, the results reveal a surface state in the bulk band gap and they provide evidence for the influence of exchange interaction and spin-orbit coupling on the surface electronic structure.The hallmark of a topological insulator is a single spinpolarized Dirac cone at the surface which is protected by time reversal-symmetry and originates from a band inversion in the bulk [1,2]. Notably, breaking time-reversal symmetry by magnetic order does not necessarily destroy the non-trivial topology but instead may drive the system into another topological phase. One example is the quantum anomalous Hall (QAH) state that has been observed in magnetically doped topological insulators [3]. The QAH state, in turn, may form the basis for yet more exotic electronic states, such as axion insulators [4,5] and chiral Majorana fermions [6]. Another example is the antiferromagnetic topological insulator state which is protected by a combination of time-reversal and lattice translational symmetries [7].Magnetic order in a topological insulator has mainly been achieved by doping with 3d impurities [3,8], which however inevitably gives rise to increased disorder. By contrast, the layered van der Waals material MnBi 2 Te 4 [9, 10] has recently been proposed to realize an intrinsic magnetic topological insulator [11][12][13][14], i.e. a compound that features magnetic order and a topologically non-trivial bulk band structure at the arXiv:1903.11826v2 [cond-mat.str-el]
NbSe2 is a remarkable superconductor in which charge-density order coexists with pairing correlations at low temperatures. Here, we study the interplay of magnetic adatoms and their Yu-Shiba-Rusinov (YSR) bound states with the charge density order. Exploiting the incommensurate nature of the charge-density wave (CDW), our measurements provide a thorough picture of how the CDW affects both the energies and the wavefunctions of the YSR states. Key features of the dependence of the YSR states on adsorption site relative to the CDW are explained by model calculations. Several properties make NbSe2 a promising substrate for realizing topological nanostructures. Our results will be important in designing such systems. arXiv:1903.09663v2 [cond-mat.mes-hall]
The bistability of spin-crossover complexes on surfaces is of great interest for potential applications. Using x-ray absorption spectroscopy, we investigated the properties of [Fe(pypyr(CF 3) 2) 2 (phen)] (pypyr = 2-(2'-pyridyl)pyrrolide, phen = 1,10-phenanthroline), a vacuum-evaporable Fe(II) complex, in direct contact to a set of substrates. The electronic properties of these substrates range from metallic to semiconducting. While dissociation is observed on metal surfaces, efficient light-induced switching is realized on semimetallic and semiconducting surfaces. This indicates that the density of states of the substrate at the Fermi level plays a role for the integrity and functionality of the adsorbed compound. In an intermediate case, namely [Fe(pypyr(CF 3) 2) 2 (phen)] on graphene/Ni(111), functional and dissociated species are found to coexist. This result indicates that some previous studies may deserve to be reconsidered because the possibility of coexisting intact and fragmented spin-crossover complexes was neglected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.