Using Monte Carlo simulation, we analyse the behaviour of two-dimensional hard rods in four different types of geometric confinement: (i) a slit pore where the particles are confined between two parallel walls with homeotropic anchoring; (ii) a hybrid slit pore formed by a planar and a homeotropic wall; square cavities that frustrate the orientational order by imposing either (iii) homeotropic or (iv) planar wall anchoring. We present results for the state diagram as a function of the packing fraction and the degree of confinement. Under extreme confinement, unexpected states appear with lower symmetries than those of the corresponding stable states in bulk, such as the formation of states that break the anchoring constraints or the symmetry imposed by the surfaces. In both types of square cavities, the particles form disclinations at intermediate densities. At high densities, however, the elastic stress is relaxed via the formation of domain walls where the director rotates abruptly by 90°.
The extension of the NLINV algorithm for SMS data was implemented and successfully demonstrated in combination with a Cartesian and radial SMS-FLASH sequence. Magn Reson Med 79:2057-2066, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Robustness against data inconsistencies, imaging artifacts and acquisition speed are crucial factors limiting the possible range of applications for magnetic resonance imaging (MRI). Therefore, we report a novel calibrationless parallel imaging technique which simultaneously estimates coil profiles and image content in a relaxed forward model. Our method is robust against a wide class of data inconsistencies, minimizes imaging artifacts and is comparably fast, combining important advantages of many conceptually different state-of-the-art parallel imaging approaches. Depending on the experimental setting, data can be undersampled well below the Nyquist limit. Here, even high acceleration factors yield excellent imaging results while being robust to noise and the occurrence of phase singularities in the image domain, as we show on different data. Moreover, our method successfully reconstructs acquisitions with insufficient field-of-view. We further compare our approach to ESPIRiT and SAKE using spin-echo and gradient echo MRI data from the human head and knee. In addition, we show its applicability to non-Cartesian imaging on radial FLASH cardiac MRI data. Using theoretical considerations, we show that ENLIVE can be related to a low-rank formulation of blind multi-channel deconvolution, explaining why it inherently promotes low-rank solutions.
Cardiac Magnetic Resonance Imaging (MRI) is time-consuming and error-prone. To ease the patient's burden and to increase the efficiency and robustness of cardiac exams, interest in methods based on continuous steady-state acquisition and self-gating has been growing in recent years. Self-gating methods extract the cardiac and respiratory signals from the measurement data and then retrospectively sort the data into cardiac and respiratory phases. Repeated breathholds and synchronization with the heart beat using some external device as required in conventional MRI are then not necessary. In this work, we introduce a novel self-gating method for radially acquired data based on a dimensionality reduction technique for time-series analysis (SSA-FARY). Building on Singular Spectrum Analysis, a zero-padded, time-delayed embedding of the auto-calibration data is analyzed using Principle Component Analysis. We demonstrate the basic functionality of SSA-FARY using numerical simulations and apply it to in-vivo cardiac radial single-slice bSSFP and Simultaneous Multi-slice radiofrequency-spoiled gradient echo measurements, as well as to Stack-of-Stars bSSFP measurements. SSA-FARY reliably detects the cardiac and respiratory motion and separates it from noise. We utilize the generated signals for high-dimensional image reconstruction using parallel imaging and compressed sensing with in-plane wavelet and (spatio-)temporal total-variation regularization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.