Cutaneous electrodes are routinely used for noninvasive electrophysiological sensing of signals from the brain, the heart, and the neuromuscular system. These bioelectronic signals propagate as ionic charge from their sources to the skin–electrode interface where they are then sensed as electronic charge by the instrumentation. However, these signals suffer from low signal‐to‐noise ratio arising from the high impedance at the tissue‐to‐electrode contact interface. This paper reports that soft conductive polymer hydrogels made purely of poly(3,4‐ethylenedioxy‐thiophene) doped with poly(styrene sulfonate) present nearly an order of magnitude decrease in the skin–electrode contact impedance (88%, 82%, and 77% at 10, 100, and 1 kHz, respectively) when compared to clinical electrodes in an ex vivo model that isolates the bioelectrochemical features of a single skin–electrode contact. Integrating these pure soft conductive polymer blocks into an adhesive wearable sensor enables high fidelity bioelectronic signals with higher signal‐to‐noise ratio (average 2.1 dB increase, max 3.4 dB increase) when compared to clinical electrodes across all subjects. The utility of these electrodes is demonstrated in a neural interface application. The conductive polymer hydrogels enable electromyogram‐based velocity control of a robotic arm to complete a pick and place task. This work provides a basis for the characterization and use of conductive polymer hydrogels to better couple human and machine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.