A variety of medical computer vision applications analyze 2D slices of computed tomography (CT) scans, whereas axial slices from the body trunk region are usually identified based on their relative position to the spine. A limitation of such systems is that either the correct slices must be extracted manually or labels of the vertebrae are required for each CT scan to develop an automated extraction system. In this paper, we propose an unsupervised domain adaptation (UDA) approach for vertebrae detection and identification based on a novel Domain Sanity Loss (DSL) function. With UDA the model’s knowledge learned on a publicly available (source) data set can be transferred to the target domain without using target labels, where the target domain is defined by the specific setup (CT modality, study protocols, applied pre- and processing) at the point of use (e.g., a specific clinic with its specific CT study protocols). With our approach, a model is trained on the source and target data set in parallel. The model optimizes a supervised loss for labeled samples from the source domain and the DSL loss function based on domain-specific “sanity checks” for samples from the unlabeled target domain. Without using labels from the target domain, we are able to identify vertebra centroids with an accuracy of 72.8%. By adding only ten target labels during training the accuracy increases to 89.2%, which is on par with the current state-of-the-art for full supervised learning, while using about 20 times less labels. Thus, our model can be used to extract 2D slices from 3D CT scans on arbitrary data sets fully automatically without requiring an extensive labeling effort, contributing to the clinical adoption of medical imaging by hospitals.
Theorien sozialer Konflikte betonen häufig deren produktive Funktion: Ohne Konflikte wären viele gesellschaftliche Entwicklungen kaum denkbar. Oft sind sie ein Zeichen wachsender Teilhabe marginalisierter Gruppen und fördern soziale Integration. Dennoch gibt es - gerade auch in Einwanderungsgesellschaften - Konflikte, die zu antagonistischen und agonalen Konstellationen, Gewalt und Kämpfen führen. Dafür spielen starke Affekte und soziale Emotionen eine entscheidende Rolle. Der sozial- und kulturpsychologische Beitrag legt dies am Beispiel von Identitäts- und Anerkennungskonflikten dar und führt dabei das psychoanalytische Konzept der Abjektion ein. Schließlich wird zwischen möglichen Ausgängen der Konfliktbearbeitung unterschieden: neben dem Konsens oder Kompromiss ist in pluralen, demokratischen Gesellschaften auch das Leben mit und im Dissens eine unabdingbare, voraussetzungsvolle Option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.