Planetary collisions in the solar system typically induce melting and vaporization of the impactor and a certain volume of the target. To study the dynamics of quasi‐instantaneous melting and subsequent quenching under postshock P‐T conditions of impact melting, we used continuous‐wave laser irradiation to melt and vaporize sandstone, iron meteorite, and basalt. Using high‐speed imaging, temperature measurements, and petrologic investigations of the irradiation targets, we show that laser‐generated melts exhibit typical characteristics of impact melts (particularly ballistic ejecta). We then calculate the entropy gains of the laser‐generated melts and compare them with the entropy gains associated with the thermodynamic states produced in hypervelocity impacts at various velocities. In conclusion, our experiments extend currently attainable postshock temperatures in impact experiments to ranges commensurate with impacts in the velocity range of 4–20 km s–1 and allow to study timescales and magnitudes of petrogenetic processes in impact melts.
We simulated entrainment of carbonates (calcite, dolomite) in silicate impact melts by 1‐bar laser melting of silicate–carbonate composite targets, using sandstone, basalt, calcite marble, limestone, dolomite marble, and iron meteorite as starting materials. We demonstrate that carbonate assimilation by silicate melts of variable composition is extremely fast (seconds to minutes), resulting in contamination of silicate melts with carbonate‐derived CaO and MgO and release of CO2 at the silicate melt–carbonate interface. We identify several processes, i.e., (1) decomposition of carbonates releases CO2 and produces residual oxides (CaO, MgO); (2) incorporation of residual oxides from proximally dissociating carbonates into silicate melts; (3) rapid back‐reactions between residual CaO and CO2 produce idiomorphic calcite crystallites and porous carbonate quench products; (4) high‐temperature reactions between Ca‐contaminated silicate melts and carbonates yield typical skarn minerals and residual oxide melts; (5) mixing and mingling between Ca‐ or Ca,Mg‐contaminated and Ca‐ or Ca,Mg‐normal silicate melts; (6) precipitation of Ca‐ or Ca,Mg‐rich silicates from contaminated silicate melts upon quenching. Our experiments reproduce many textural and compositional features of typical impact melts originating from silicate–carbonate targets. They reinforce hypotheses that thermal decomposition of carbonates, rapid back‐reactions between decomposition products, and incorporation of residual oxides into silicate impact melts are prevailing processes during impact melting of mixed silicate–carbonate targets. However, by comparing our results with previous studies and thermodynamic considerations on the phase diagrams of calcite and quartz, we envisage that carbonate impact melts are readily produced during adiabatic decompression from high shock pressure, but subsequently decompose due to heat influx from coexisting silicate impact melts or hot breccia components. Under certain circumstances, postshock conditions may favor production and conservation of carbonate impact melts. We conclude that the response of mixed carbonate–silicate targets to impact might involve melting and decomposition of carbonates, the dominant response being governed by a complex variety of factors.
The technology of missiles and of their countermeasures is evolving continuously. High-power lasers are an option to encounter these threats. In order to understand their potential in such a scenario, it is vital to investigate the laser effects in the presence of a corresponding aerodynamic environment. Thus, experimental and numerical investigations were conducted cooperatively by Fraunhofer Ernst-Mach-Institut and the Supersonic and Hypersonic Technologies Department of DLR. An ytterbium fiber laser system was installed at the supersonic wind tunnel VMK. The laboratory was fit to meet necessary laser safety requirements. Combined subsonic and supersonic flow and high-power laser experiments with flow velocities up to a Mach number of 3 and a laser power up to 10 kW were realized. Two kind of tests were performed, focusing on laser beam distortion through aero-optical effects and on high-power laser effects, respectively. The interaction effects between aerodynamics, laser radiation and irradiated targets were studied on flatplates as well as cylindrical and radome targets, simulating generic missile design. Irradiated objects consisted of steel, aluminum, carbon-fiber-reinforced polymer and the ceramic-based composite WHIPOX. While beam distortions were studied with a wavefront sensor, damaging processes were investigated by measuring the perforation time of the targets, as well as via high-speed imaging, thermography as well as Schlieren imaging. Numerical three-dimensional, steady, and uncoupled simulations were performed. The data indicated complex interactions between material, laser beam, and aerodynamics. This investigation can be used as an initial basis for further analysis of laser-material-aerodynamic interactions with respect to missile defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.