Aldoses and ketoses can glycate proteins yielding isomeric Amadori and Heyns products, respectively. Evidently, d-fructose is more involved in glycoxidation than d-glucose favoring the formation of advanced glycation endproducts (AGEs). While Amadori products and glucation have been studied extensively, the in vivo effects of fructation are largely unknown. The characterization of isomeric Amadori and Heyns peptides requires sufficient quantities of pure peptides. Thus, the glycated building block Nα-Fmoc-Lys[Nε-(2-deoxy-d-glucos-2-yl),Nε-Boc]-OH (Fmoc-Lys(Glc,Boc)-OH), which was synthesized in two steps starting from unprotected d-fructose and Fmoc-l-lysine hydrochloride, was site-specifically incorporated during solid-phase peptide synthesis. The building block allowed the synthesis of a peptide identified in tryptic digests of human serum albumin containing the reported glycation site at Lys233. The structure of the glycated amino acid derivatives and the peptide was confirmed by mass spectrometry and NMR spectroscopy. Importantly, the unprotected sugar moiety showed neither notable epimerization nor undesired side reactions during peptide elongation, allowing the incorporation of epimerically pure glucosyllysine. Upon acidic treatment, the building block as well as the resin-bound peptide formed one major byproduct due to incomplete Boc-deprotection, which was well separated by reversed-phase chromatography. Expectedly, the tandem mass spectra of the fructated amino acid and peptide were dominated by signals indicating neutral losses of 18, 36, 54, 84 and 96 m/z-units generating pyrylium and furylium ions.
D-glucose and D-fructose present in blood, tissues, and organs of all mammals can react with amino groups, leading to glucated (Amadori) and fructated (Heyns) products, i.e., proteins glycated at lysine residues. While typically present at low concentration in humans, metabolic diseases including diabetes elevate sugar levels, favoring glycation and consecutive reactions leading to advanced glycation end products (AGEs) linked to diabetic complications and cardiovascular diseases. Analytical methods able to differentiate and to individually quantify Amadori-and Heyns-modified proteins in complex sample mixtures, e.g., serum, are still very limited. Here, we show that the reported and supposedly specific neutral losses displayed in tandem mass spectra of Heyns peptides cannot be used for a reliable differentiation as they were also observed for Amadori peptides. However, the combination of several neutral loss signals in fragment ion ratios at both precursor and fragment ion signals allowed the differentiation and relative quantitation of coeluting isomeric Amadori and Heyns peptides at different concentrations and peptide ratios. This was also true for digested human plasma. Thus, the presented strategy allows the quantitation of Amadori and Heyns peptides in complex samples, especially by spiking isotope-labeled peptides. This will allow searching for glucated and fructated biomarkers in clinical samples.
Amino groups in proteins can react with aldehyde groups in aldoses or keto groups in ketoses, e.g., d-glucose and d-fructose, yielding Schiff bases that rearrange to more stable Amadori and Heyns products, respectively. Analytical strategies to identify and quantify each glycation product in the presence of the corresponding isomer are challenged by similar physicochemical properties, impeding chromatographic separations, and by identical masses including very similar fragmentation patterns in tandem mass spectrometry. Thus, we studied the separation of seven peptide families, each consisting of unmodified, glucated, and fructated 15mer to 22mer peptides using reversed-phase (RP) and hydrophilic interaction chromatography (HILIC). In RP-HPLC using acidic acetonitrile gradients, unglycated peptides eluted ~ 0.1 to 0.8 min after the corresponding glycated peptides with four of seven peptides being baseline separated. Isomeric glucated and fructated peptides typically coeluted, although two late-eluting peptides were partially separated. Neutral eluents (pH 7.2) improved the chromatographic resolution (Rs), especially in the presence of phosphate, providing good and often even baseline separations for six of the seven isomeric glycated peptide pairs with fructated peptides eluting earlier (Rs = 0.7 to 1.5). Some glucated and unmodified peptides coeluted, but they can be distinguished by mass spectrometry. HILIC separated glycated and unmodified peptides well, whereas glucated and fructated peptides typically coeluted. In conclusion, HILIC efficiently separated unmodified and the corresponding glycated peptides, while isomeric Amadori and Heyns peptides were best separated by RP-HPLC using phosphate buffered eluents.
The signal transducer and activation of transcription (STAT) proteins are a family of Src homology 2 (SH2) domain-containing transcription factors. The family member STAT4 is a mediator of IL-12 signalling and has been implicated in the pathogenesis of multiple autoimmune diseases. The activity of STAT4 requires binding of phosphotyrosine-containing motifs to its SH2 domain. Selective inhibitors of the STAT4 SH2 domain have not been published to date. Here, we present a fluorescence polarization-based assay for the identification of inhibitors of the STAT4 SH2 domain. The assay is based on the interaction between the STAT4 SH2 domain and the fluorophore-labelled peptide 5-carboxyfluorescein-GpYLPQNID (Kd = 34 ± 4 nM). The assay is stable with respect to DMSO concentrations of up to 10% and incubation times of at least 8 h. The Z’-value of 0.85 ± 0.01 indicates that the assay is suited for use in high-throughput screening campaigns aimed at identifying new therapeutic modalities for the treatment of autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.