Alternatives for strain‐promoted azide–alkyne cycloaddition (SPAAC) chemistries are needed because of the employment of expensive and not easily scalable precursors such as bicyclo[6.1.0]non‐4‐yne (BCN). Inverse electron demand Diels Alder (iEDDA)‐based click chemistries, using dienophiles and tetrazines, offer a more bioorthogonal and faster toolbox, especially in the biomedical field. Here, the straightforward synthesis of dendritic polyglycerin dienophiles (dPG‐dienophiles) and dPG‐methyl‐tetrazine (dPG‐metTet) as macromonomers for a fast, stable, and scalable nanogel formation by inverse nanoprecipitation is reported. Nanogel size–influencing parameters are screened such as macromonomer concentration and water‐to‐acetone ratio are screened. dPG‐norbonene and dPG‐cyclopropene show fast and stable nanogel formation in the size range of 40–200 nm and are thus used for the coprecipitation of the model protein myoglobin. High encapsulation efficiencies of more than 70% at a 5 wt% feed ratio are obtained in both cases, showing the suitability of the mild gelation chemistry for the encapsulation of small proteins.
The sensitivity of therapeutic proteins is a challenge for their use in biomedical applications, as they are prone to degradation and opsonization, thus limiting their potential. This demands for the development of drug delivery systems shielding proteins and releasing them at the site of action. Here, we describe the synthesis of novel polyglycerol-based redox-responsive nanogels and report on their potential as nanocarrier systems for the delivery of cytochrome C (CC). This system is based on an encapsulation protocol of the therapeutic protein into the polymer network. NGs were formed via inverse nanoprecipitation using inverse electron-demand Diels–Alder cyclizations (iEDDA) between methyl tetrazines and norbornenes. Coprecipitation of CC led to high encapsulation efficiencies. Applying physiological reductive conditions of l-glutathione (GSH) led to degradation of the nanogel network, releasing 80% of the loaded CC within 48 h while maintaining protein functionality. Cytotoxicity measurements revealed high potency of CC-loaded NGs for various cancer cell lines with low IC50 values (up to 30 μg·mL−1), whereas free polymer was well tolerated up to a concentration of 1.50 mg·mL−1. Confocal laser scanning microscopy (CLSM) was used to monitor internalization of free and CC-loaded NGs and demonstrate the protein cargo’s release into the cytosol.
Biocompatible, environmentally responsive, and scalable nanocarriers are needed for targeted and triggered delivery of therapeutic proteins. Suitable polymers, preparation methods, and crosslinking chemistries must be considered for nanogel formation. Biocompatible dendritic polyglycerol (dPG) is used in the mild, surfactant-free inverse nanoprecipitation method for nanogel preparation. The biocompatible, fast, and bioorthogonal inverse electron demand Diels-Alder (iEDDA) crosslinking chemistry is used. In this work, the synthesis of pH-degradable nanogels, based on tetrazine, norbonene, and bicyclo[6.1.0]nonyne (BCN) functionalized macromonomers, is reported. The macromonomers are non-toxic up to 2.5 mg mL −1 in three different cell lines. Nanogels are obtained in the size range of 47 to 200 nm and can be degraded within 48 h at pH 4.5 (BA-gels), and pH 3 (THP-gels), respectively. Encapsulation of asparaginase (32 kDa) yield encapsulation efficiencies of up to 93% at 5 wt.% feed. Overall, iEDDAcrosslinked pH-degradable dPG-nanogels from inverse nanoprecipitation are promising candidates for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.