Topologically close packed phases, among them the µ-phase studied here, are commonly considered as being hard and brittle due to their close packed and complex structure. Nanoindentation enables plastic deformation and therefore investigation of the structure of mobile defects in the μ-phase, which, in contrast to grown-in defects, has not been examined yet. High resolution transmission electron microscopy (HR-TEM) performed on samples deformed by nanoindentation revealed stacking faults which are likely induced by plastic deformation. These defects were compared to theoretically possible stacking faults within the µ-phase building blocks, and in particular Laves phase layers. The experimentally observed stacking faults were found resulting from synchroshear assumed to be associated with deformation in the Laves-phase building blocks.
The integration of rising shares of volatile wind power in the generation mix is a major challenge for the future energy system. To address the uncertainties involved in wind power generation, models analysing and simulating the stochastic nature of this energy source are becoming increasingly important. One statistical approach that has been frequently used in the literature is the Markov chain approach. Recently, the method was identified as being of limited use for generating wind time series with time steps shorter than 15-40 min as it is not capable of reproducing the autocorrelation characteristics accurately. This paper presents a new Markov-chain-related statistical approach that is capable of solving this problem by introducing a variable second lag. Furthermore, additional features are presented that allow for the further adjustment of the generated synthetic time series. The influences of the model parameter settings are examined by meaningful parameter variations. The suitability of the approach is demonstrated by an application analysis with the example of the wind feed-in in Germany. It shows that-in contrast to conventional Markov chain approaches-the generated synthetic time series do not systematically underestimate the required storage capacity to balance wind power fluctuation.
The role of topologically close packed (TCP) phases in deformation of superalloys and steels is still not fully resolved. In particular, the intrinsic deformation mechanisms of these phases are largely unknown including the active slip systems in most of these complex crystal structures. Here, we present a first detailed investigation of the mechanical properties of the Fe7Mo6 µ-phase at room temperature using microcompression and nanoindentation with statistical EBSD-assisted slip trace analysis and TEM imaging. Slip occurs predominantly on the basal and prismatic planes, resulting also in decohesion on prismatic planes with high defect density. The correlation of the deformation structures and measured hardness reveals pronounced hardening where interaction of slip planes occurs and prevalent deformation at pre-existing defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.