BackgroundThe atypical protein kinases C (PKC) isoforms ι/λ and ζ play crucial roles in many cellular processes including development, cell proliferation, differentiation and cell survival. Possible redundancy between the two isoforms has always been an issue since most biochemical tools do not differentiate between the two proteins. Thus, much effort has been made during the last decades to characterize the functions of aPKCs using gene targeting approaches and depletion studies. However, little is known about the specific roles of each isoform in mouse development.Methodology/Principal FindingsTo evaluate the importance of PKCι in mouse development we designed PKCι deletion mutants using the gene targeting approach. We show that the deletion of PKCι, results in a reduced size of the amniotic cavity at E7.5 and impaired growth of the embryo at E8.5 with subsequent absorption of the embryo. Our data also indicate an impaired localization of ZO-1 and disorganized structure of the epithelial tissue in the embryo. Importantly, using electron microscopy, embryoid body formation and immunofluorescence analysis, we found, that in the absence of PKCι, tight junctions and apico-basal polarity were still established. Finally, our study points to a non-redundant PKCι function at E9.5, since expression of PKCζ is able to rescue the E7.5 phenotype, but could not prevent embryonic lethality at a later time-point (E9.5).ConclusionOur data show that PKCι is crucial for mouse embryogenesis but is dispensable for the establishment of polarity and tight junction formation. We present a compensatory function of PKCζ at E7.5, rescuing the phenotype. Furthermore, this study indicates at least one specific, yet unknown, PKCι function that cannot be compensated by the overexpression of PKCζ at E9.5.
EssentialsA hypoxic microenvironment is a common feature of tumors that may influence activation of coagulation. MCF-7 and SK-BR-3 breast cancer cells and breast cancer tissue samples were used. The results showed transcriptional repression of tissue factor pathway inhibitor expression in hypoxia. Hypoxia-inducible factor 1a may be a target for the therapy of cancer-related coagulation and thrombosis.Summary. Background: Activation of coagulation is a common finding in patients with cancer, and is associated with an increased risk of venous thrombosis. As a hypoxic microenvironment is a common feature of solid tumors, we investigated the role of hypoxia in the regulation of tissue factor (TF) pathway inhibitor (TFPI) expression in breast cancer. Objectives: To explore the transcriptional regulation of TFPI by hypoxia-inducible factor (HIF)-1a in breast cancer cells and their correlation in breast cancer tissues. Methods and results: MCF-7 and SK-BR-3 breast cancer cells were cultured in 1% oxygen or treated with cobalt chloride (CoCl 2 ) to mimic hypoxia. Time-dependent and dose-dependent downregulation of TFPI mRNA (quantitative RT-PCR) and of free TFPI protein (ELISA) were observed in hypoxia. Western blotting showed parallel increases in the levels of HIF-1a protein and TF. HIF-1a inhibitor abolished or attenuated the hypoxia-induced downregulation of TFPI. Luciferase reporter assay showed that both hypoxia and HIF-1a overexpression caused strong repression of TFPI promoter activity. Subsequent chromatin immunoprecipitation and mutagenesis analysis demonstrated a functional hypoxia response element within the TFPI promoter, located at À1065 to À1060 relative to the transcriptional start point. In breast cancer tissue samples, gene expression analyses showed a positive correlation between the mRNA expression of TFPI and that of HIF-1a.Conclusions: This study demonstrates that HIF-1a is involved in the transcriptional regulation of the TFPI gene, and suggests that a hypoxic microenvironment inside a breast tumor may induce a procoagulant state in breast cancer patients.
Deletion of the Habp2 gene encoding Factor VII-activating protease (FSAP) increases liver fibrosis in mice. A single nucleotide polymorphism (G534E) in HABP2 leads to lower enzymatic activity and is associated with enhanced liver fibrosis in humans. Liver fibrosis is associated with a decrease in FSAP expression but, to date, nothing is known about how this might be regulated. Primary mouse hepatocytes or the hepatocyte cell line, AML12, were treated with different factors, and expression of FSAP was determined. Of the various regulatory factors tested, only transforming growth factor-β (TGF-β) demonstrated a concentration- and time-dependent inhibition of FSAP expression at the mRNA and protein level. The TGF-β-Type I receptor (ALK-5) antagonist SB431542 and Smad2 siRNA, but neither SIS3, which inhibits SMAD3, nor siRNA against Smad3 could block this effect. Various regions of the HABP2 promoter region were cloned into reporter constructs, and the promoter activity was determined. Accordingly, the promoter activity, which could phenocopy changes in Habp2 mRNA in response to TGF-β, was found to be located in the 177-bp region upstream of the transcription start site, and this region did not contain any SMAD binding sites. Mutation analysis of the promoter and chromatin immunoprecipitation assays were performed to identify an important role for the ATF3 binding element. Thus, TGF-β is the most likely mediator responsible for the decrease in FSAP expression in liver fibrosis.
SummaryThe atypical protein kinases C (PKC) isoforms ι and ζ play crucial roles in regulation of signaling pathways related to proliferation, differentiation and cell survival. Over the years several interaction partners and phosphorylation targets have been identified. However, little is known about the regulation of atypical aPKC isoforms. To address this question, we performed a comparative analysis of atypical aPKCι/λ and ζ in MDCK cells. By using green fluorescence protein (GFP) fusion proteins containing the full-length or truncated proteins, we were able to recognize differences in subcellular localization and nucleocytoplasmic shuttling of both isoforms. We show, that an earlier described nuclear localization sequence (NLS), plays a role in the regulation of atypical aPKCζ but not in aPKCι, despite the fact that it is present in both isoforms. Leptomycin B treatment induces accumulation of GFP-fusion protein of both isoforms in the nucleus. Regardless, the loss of the NLS only decreases shuttling of aPKCζ, while aPKCι remains unaffected. In addition, we identified the hinge region as a potential regulator of localization of atypical PKCs. With a set of chimeric proteins we show that the hinge region of aPKCι mediates nuclear localization. In contrast, the hinge region of aPKCζ causes exclusion from the nucleus, indicating two different mechanisms leading to isoform specific regulation. Taken together, we show for the first time, that the atypical isoforms aPKCι and ζ underly different mechanisms regarding their regulation of subcellular localization and translocation into the nucleus in MDCK cells.
Increased Factor VII activating protease (FSAP) activity has a protective effect in diverse disease conditions as inferred from studies in FSAP-/- mice and humans deficient in FSAP activity due to a single nucleotide polymorphism. The activation of FSAP zymogen in plasma is mediated by extracellular histones that are released during tissue injury or inflammation or by positively charged surfaces. However, it is not clear if this activation mechanism is specific and amenable to manipulation. Using a phage display approach we have identified a peptide, NNKC9/41, that activates pro-FSAP in plasma. Other commonly found zymogens in the plasma were not activated. Binding studies with FSAP domain deletion mutants indicate that the N-terminus of FSAP is the key interaction site of this peptide. Blocking the contact pathway of coagulation did not influence pro-FSAP activation by the peptide. In a monoclonal antibody screen, we identified MA-FSAP-38C7 that prevented the activation of pro-FSAP by the peptide. This antibody bound to the LESLDP sequence (amino acids 30-35) in the N-terminus of FSAP. The plasma clotting time was shortened by NNKC9/41 and this was reversed by MA-FSAP-38C7 demonstrating the utility of this peptide. Identification of this peptide, and the corresponding interaction site, provides proof of principle that it is possible to activate a single protease zymogen in blood in a specific manner. Peptide NNKC/41 will be useful as a tool to delineate the molecular mechanism of activation of pro-FSAP in more detail, elucidate its biological role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.