In this paper a novel articulated atlas for the fully automated segmentation of the skeleton from head & neck CT datasets is presented. An individual atlas describing the shape and appearance is created for each individual bone. Principal Component Analysis is used to learn spatial relations between those atlases resulting in a unified articulated atlas. Transformations are parameterized using the matrix exponential to enable linear combinations required for learning. The adaptation to test images considers appearance, distance to bone structures and the trained articulation space. For evaluation, an atlas created from 10 manually labeled training images has been applied to 46 clinically acquired head & neck CT datasets. Visual inspection showed that in 74% of the cases, the adaptation process was successful. In a second experiment leave-one-out validation was used to quantify the segmentation accuracy. The successfully adapted cases resulted in an average volume overlap error of 30.67 and an average symmetric surface distance of 0.76 mm.
Abstract-One of the major problems related to cancer treatment is its recurrence. Without knowing in advance how likely the cancer will relapse, clinical practice usually recommends adjuvant treatments that have strong side effects. A way to optimize treatments is to predict the recurrence probability by analyzing a set of bio-markers. The NeoMark European project has identified a set of preliminary bio-markers for the case of oral cancer by collecting a large series of data from genomic, imaging, and clinical evidence. This heterogeneous set of data needs a proper representation in order to be stored, computed, and communicated efficiently. Ontologies are often considered the proper mean to integrate biomedical data, for their high level of formality and for the need of interoperable, universally accepted models. This paper presents the NeoMark system and how an ontology has been designed to integrate all its heterogeneous data. The system has been validated in a pilot in which data will populate the ontology and will be made public for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.