SUMMARYIncreasing cross-border trade at European borders has lead to the necessity of an efficient allocation of scarce cross-border capacities. Explicit auctions used to be the commonly applied auction method in the past at most borders, but due to the separation of the trade of electrical energy and the allocation of cross-border capacity, market inefficiencies arise. As a consequence, a trend toward a market coupling, which combines the trade of electrical energy with the allocation of cross-border capacity, can be observed across Europe. The most convincing approach to solve the complex optimization task associated with market couplings solves the problem by a maximization of the system-wide welfare based on a closedform optimization. Practical experience shows that problems remain with such an approach. This paper thoroughly analyzes problems that may occur in market coupling regimes with a closed-form optimization. In this paper an extension of formerly presented formulations of the optimization problem is presented, which avoids the described problems. The extended formulation still assures practically feasible calculation times of far less than 10 minutes even for systems with up to 12 market areas. Further, a fair and transparent approach to determine feasible market clearing prices not neglecting the time and market coupling relationship between prices is shown in this paper and it is demonstrated that this approach does not lead to practically infeasible calculation times.
Locally load-optimized fiber-based composites, the so-called tailored textiles (TT), offer the potential to reduce weight and cost compared to conventional fiber-reinforced plastics (FRP). However, the design of TT has a higher complexity compared to FRP. Current approaches, focusing on solving this complexity for multiple objectives (cost, weight, stiffness), require great effort and calculation time, which makes them unsuitable for serial applications. Therefore, in this paper, an approach for the efficient creation of simplified TT concept designs is presented. By combining simplified models for structural design and cost estimation, the most promising concepts, regarding the cost, weight, and stiffness of TT parts, can be identified. By performing a parameter study, the cost, weight, and stiffness optima of a sample part compared to a conventional FRP component can be determined. The cost and weight were reduced by 30% for the same stiffness. Applying this approach at an early stage of product development reduces the initial complexity of the subsequent detailed engineering design, e.g., by applying methods from the state of the art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.