Suspension components play key roles in the running behaviour of rail vehicles, and therefore, mathematical models of suspension components are essential ingredients of railway vehicle multi-body models. The aims of this paper are to review existing models for railway vehicle suspension components and their use for railway vehicle dynamics multi-body simulations, to describe how model parameters can be defined and to discuss the required level of detail of component models in view of the accuracy expected from the overall simulation model. This paper also addresses track models in use for railway vehicle dynamics simulations, recognising their relevance as an indispensable component of the system simulation model. Finally, this paper reviews methods presently in use for the checking and validation of the simulation model.
This paper summarises the historical development of railway freight vehicles and how vehicle designers have tackled the difficult challenges of producing running gear which can accommodate the very high tare to laden mass of typical freight wagons whilst maintaining stable running at the maximum required speed and good curving performance. The most common current freight bogies are described in detail and recent improvements in techniques used to simulate the dynamic behaviour of railway vehicles are summarised and examples of how these have been used to improve freight vehicle dynamic behaviour are included. A number of recent developments and innovative components and sub systems are outlined and finally two new developments are presented in more detail: the LEILA bogie and the SUSTRAIL bogie.
Since the concept of active suspensions appeared, its large possible benefits has attracted continuous exploration in the field of railway engineering. With new demands of higher speed, better ride comfort and lower maintenance cost for railway vehicles, active suspensions are very promising technologies. Being the starting point of commercial application of active suspensions in rail vehicles, tilting trains have become a great success in some countries. With increased technical maturity of sensors and actuators, active suspension has unprecedented development opportunities. In this work, the basic concepts are summarized with new theories and solutions that have appeared over the last decade. Experimental studies and the implementation status of different active suspension technologies are described as well. Firstly, tilting trains are briefly described. Thereafter, an indepth study for active secondary and primary suspensions is performed. For both topics, after an introductory section an explanation of possible solutions existing in the literature is given. The implementation status is reported. Active secondary suspensions are categorized into active and semi-active suspensions. Primary suspensions are instead divided between acting on solid-axle wheelsets and independently rotating wheels. Lastly, a brief summary and outlook is presented in terms of benefits, research status and challenges. The potential for active suspensions in railway applications is outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.