Systemic lupus erythematosus is a systemic and chronic autoimmune disease characterized by loss of tolerance towards nuclear antigens with autoreactive CD4 D T cells implicated in disease pathogenesis. However, very little is known about their receptor specificity since the detection of human autoantigen specific CD4 D T cells has been extremely challenging. Here we present an analysis of CD4 D T cells reactive to nuclear antigens using two complementary methods: T cell libraries and antigenreactive T cell enrichment. The frequencies of nuclear antigen specific CD4 D T cells correlated with disease severity. These autoreactive T cells produce effector cytokines such as interferon-g, interleukin-17, and interleukin-10. Compared to blood, these cells were enriched in the urine of patients with active lupus nephritis, suggesting an infiltration of the inflamed kidneys. Thus, these previously unrecognized characteristics support a role for nuclear antigen-specific CD4 D T cells in systemic lupus erythematosus.
Creatinine and proteinuria are used to monitor kidney transplant patients. However, renal biopsies are needed to diagnose renal graft rejection. Here, we assessed whether the quantification of different urinary cells would allow non-invasive detection of rejection. Urinary cell numbers of CD4+ and CD8+ T cells, monocytes/macrophages, tubular epithelial cells (TEC), and podocalyxin(PDX)-positive cells were determined using flow cytometry and were compared to biopsy results. Urine samples of 63 renal transplant patients were analyzed. Patients with transplant rejection had higher amounts of urinary T cells than controls; however, patients who showed worsening graft function without rejection had similar numbers of T cells. T cells correlated with histological findings (interstitial inflammation p = 0.0005, r = 0.70; tubulitis p = 0.006, r = 0.58). Combining the amount of urinary T cells and TEC, or T cells and PDX+ cells, yielded a significant segregation of patients with rejection from patients without rejection (all p < 0.01, area under the curve 0.89–0.91). Urinary cell populations analyzed by flow cytometry have the potential to introduce new monitoring methods for kidney transplant patients. The combination of urinary T cells, TEC, and PDX-positive cells may allow non-invasive detection of transplant rejection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.