We describe a 96-well plate compatible membrane-based proteomic sample processing method, which enables the complete processing of 96 samples (or multiples thereof) within a single workday. This method uses a large-pore hydrophobic PVDF membrane that efficiently adsorbs proteins, resulting in fast liquid transfer through the membrane and significantly reduced sample processing times. Low liquid transfer speeds have prevented the useful 96-well plate implementation of FASP as a widely used membrane-based proteomic sample processing method. We validated our approach on whole-cell lysate and urine and cerebrospinal fluid as clinically relevant body fluids. Without compromising peptide and protein identification, our method uses a vacuum manifold and circumvents the need for digest desalting, making our processing method compatible with standard liquid handling robots. Mass spectrometry (MS)-based proteomics is moving increasingly into the translational and clinical research arena, where robust and efficient sample processing is of particular importance. The conventional sample processing methods in proteomics, namely SDS-PAGE, or in-solution-based sample processing, are slow and laborious and thus do not easily provide the reproducibility and throughput to meet current demands. A paradigm shift was the introduction of a filteraided sample processing method (FASP), which is initially described by Manza et al.(1) and then fully realized in practice by Wisniewski et al. (2). These filter-aided methods make use of ultrafiltration membranes with molecular weight cut offs (MWCO) in the 10 to 30 kDa range to efficiently remove small molecules and salts and to capture denatured proteins on a cellulose filter even if the molecular weight of the protein is much smaller than the nominal MWCO of the ultrafiltration membrane. Thus, the denaturation step is crucial to ensure that proteins much smaller than the nominal MWCO are efficiently retained by, e.g. a 10 kDa MWCO filter.In translational and clinical proteomics, which normally include large cohorts, the multititer-well plate is the preferred format for sample processing and storage. Although the application of FASP in the 96-well plate format has been described (3, 4), the major limitation of FASP in the 96-well plate is the much slower speed at which the 96-well plates have to be centrifuged: while a single ultrafiltration unit withstands up to 14,000 ϫ g, the 96-well plate format can only be centrifuged at g-forces of up to 2,200 ϫ g. This significantly lower g-force for 96-well plates results in a slow liquid transfer, which in turn considerably prolongs the required centrifugation times to hours instead of tens of minutes for the three to four necessary centrifugation steps (i) for the initial loading, reduction and alkylation, (ii) for the different washing steps, and (iii) for the elution (3).Independent of the format FASP is performed in, the conventional FASP also requires relative large volumes of high salt concentration for efficient elution of the tryptic peptid...
The promises of data-independent acquisition (DIA) strategies are a comprehensive and reproducible digital qualitative and quantitative record of the proteins present in a sample. We developed a fast and robust DIA method for comprehensive mapping of the urinary proteome that enables large scale urine proteomics studies. Compared to a data-dependent acquisition (DDA) experiments, our DIA assay doubled the number of identified peptides and proteins per sample at half the coefficients of variation observed for DDA data (DIA = ~8%; DDA = ~16%). We also tested different spectral libraries and their effects on overall protein and peptide identifications and their reproducibilities, which provided clear evidence that sample type-specific spectral libraries are preferred for reliable data analysis. To show applicability for biomarker discovery experiments, we analyzed a sample set of 87 urine samples from children seen in the emergency department with abdominal pain. The whole set was analyzed with high proteome coverage (~1300 proteins/sample) in less than 4 days. The data set revealed excellent biomarker candidates for ovarian cyst and urinary tract infection. The improved throughput and quantitative performance of our optimized DIA workflow allow for the efficient simultaneous discovery and verification of biomarker candidates without the requirement for an early bias toward selected proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.