Anion-molecule nucleophilic substitution (S(N)2) reactions are known for their rich reaction dynamics, caused by a complex potential energy surface with a submerged barrier and by weak coupling of the relevant rotational-vibrational quantum states. The dynamics of the S(N)2 reaction of Cl- + CH3I were uncovered in detail by using crossed molecular beam imaging. As a function of the collision energy, the transition from a complex-mediated reaction mechanism to direct backward scattering of the I- product was observed experimentally. Chemical dynamics calculations were performed that explain the observed energy transfer and reveal an indirect roundabout reaction mechanism involving CH3 rotation.
The highly exoergic nucleophilic substitution reaction F(-) + CH3I shows reaction dynamics strikingly different from that of substitution reactions of larger halogen anions. Over a wide range of collision energies, a large fraction of indirect scattering via a long-lived hydrogen-bonded complex is found both in crossed-beam imaging experiments and in direct chemical dynamics simulations. Our measured differential scattering cross sections show large-angle scattering and low product velocities for all collision energies, resulting from efficient transfer of the collision energy to internal energy of the CH3F reaction product. Both findings are in strong contrast to the previously studied substitution reaction of Cl(-) + CH3I [Science 2008, 319, 183-186] at all but the lowest collision energies, a discrepancy that was not captured in a subsequent study at only a low collision energy [J. Phys. Chem. Lett. 2010, 1, 2747-2752]. Our direct chemical dynamics simulations at the DFT/B97-1 level of theory show that the reaction is dominated by three atomic-level mechanisms, an indirect reaction proceeding via an F(-)-HCH2I hydrogen-bonded complex, a direct rebound, and a direct stripping reaction. The indirect mechanism is found to contribute about one-half of the overall substitution reaction rate at both low and high collision energies. This large fraction of indirect scattering at high collision energy is particularly surprising, because the barrier for the F(-)-HCH2I complex to form products is only 0.10 eV. Overall, experiment and simulation agree very favorably in both the scattering angle and the product internal energy distributions.
Studies of charge transfer are often hampered by difficulties in determining the charge localization at a given time. Here, we used ultrashort x-ray free-electron laser pulses to image charge rearrangement dynamics within gas-phase iodomethane molecules during dissociation induced by a synchronized near-infrared (NIR) laser pulse. Inner-shell photoionization creates positive charge, which is initially localized on the iodine atom. We map the electron transfer between the methyl and iodine fragments as a function of their interatomic separation set by the NIR-x-ray delay. We observe signatures of electron transfer for distances up to 20 angstroms and show that a realistic estimate of its effective spatial range can be obtained from a classical over-the-barrier model. The presented technique is applicable for spatiotemporal imaging of charge transfer dynamics in a wide range of molecular systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.