An acceptorless dehydrogenation of heterocycles catalyzed by frustrated Lewis pairs (FLPs) was developed. Oxidation with concomitant liberation of molecular hydrogen proceeded in high to excellent yields for N-protected indolines as well as four other substrate classes. The mechanism of this unprecedented FLP-catalyzed reaction was investigated by mechanistic studies, characterization of reaction intermediates by NMR spectroscopy and X-ray crystal analysis, and by quantum-mechanical calculations. Hydrogen liberation from the ammonium hydridoborate intermediate is the rate-determining step of the oxidation. The addition of a weaker Lewis acid as a hydride shuttle increased the reaction rate by a factor of 2.28 through a second catalytic cycle.
The frustrated Lewis pair-mediated reversible hydrogen activation is studied as a function of the electrondonor quality of a series of phosphines. The increasing acidity of the generated phosphonium species leads to a stepwise lowering of the temperature for the highly reversible H 2 -activation and permits concrete classification for the first time. The influence of the acid strength on the metal-free hydrogenation of selected olefins is investigated by kinetic experiments and quantum chemical calculations. Detailed information for the rate-determining steps fully support our mechanistic model of a protonation step prior to hydride transfer. The rate of hydrogenation is strongly dependent on the electronic nature of the phosphine and of the acidity of the corresponding phosphonium cation. A careful balance of these two factors provides highly efficient metal-free hydrogenation catalysts. The provided findings are used to revise the reactivity of Lewis bases in the hydrogenation of imines, one of the most recognized applications of FLPs.
The autoinduced, frustrated Lewis pair (FLP)-catalyzed hydrogenation of 16-benzene-ring substituted N-benzylidene-tert-butylamines with B(2,6-F2 C6 H3 )3 and molecular hydrogen was investigated by kinetic analysis. The pKa values for imines and for the corresponding amines were determined by quantum-mechanical methods and provided a direct proportional relationship. The correlation of the two rate constants k1 (simple catalytic cycle) and k2 (autoinduced catalytic cycle) with pKa difference between imine and amine pairs (ΔpKa ) or Hammett's σ parameter served as useful parameters to establish a structure-reactivity relationship for the FLP-catalyzed hydrogenation of imines.
The frustrated Lewis pair (FLP)-catalyzed hydrogenation and deuteration of N-benzylidene-tert-butylamine (2) was kinetically investigated by using the three boranes B(C6F5)3 (1), B(2,4,6-F3-C6H2)3 (4), and B(2,6-F2-C6H3)3 (5) and the free activation energies for the H2 activation by FLP were determined. Reactions catalyzed by the weaker Lewis acids 4 and 5 displayed autoinductive catalysis arising from a higher free activation energy (2 kcal mol(-1)) for the H2 activation by the imine compared to the amine. Surprisingly, the imine reduction using D2 proceeded with higher rates. This phenomenon is unprecedented for FLP and resulted from a primary inverse equilibrium isotope effect.
The borane-catalyzed synthesis of quinoline derivatives bearing tetrasubstituted stereocenters from vinyl anilines has been developed. Mechanistic studies and quantum-mechanical investigations support the hydride abstraction/electrocyclization/hydride addition mechanism. The products were obtained in up to 99 % yield with a diastereoselectivity of >99 % in favour for the 3a-5-cis isomer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.