This paper introduces a framework for a highly constrained sports scheduling problem which is modeled from the requirements of various professional sports leagues. We define a sports scheduling problem, introduce the necessary terminology and detail the constraints of the problem. A set of artificial and real-world instances derived from the actual problems solved for the professional sports league owners are proposed. We publish the best solutions we have found, and invite the sports scheduling community to find solutions to the unsolved instances. We believe that the instances will help researchers to test the value of their solution methods. The instances are available online.
We study approaches for the exact solution of the NP-hard minimum spanning tree problem under conflict constraints. Given a graph G(V, E) and a set C ⊂ E × E of conflicting edge pairs, the problem consists of finding a conflict-free minimum spanning tree, i.e. feasible solutions are allowed to include at most one of the edges from each pair in C. The problem was introduced recently in the literature, with several results on its complexity and approximability. Some formulations and both exact and heuristic algorithms were also discussed, but computational results indicate considerably large duality gaps and a lack of optimality certificates for benchmark instances. In this paper, we build on the representation of conflict constraints using an auxiliary conflict graphĜ(E,C), where stable sets correspond to conflict-free subsets of E. We introduce a general preprocessing method and a branch and cut algorithm using an IP formulation with exponentially sized classes of valid inequalities for both the spanning tree and the stable set polytopes. Encouraging computational results indicate that the dual bounds of our approach are significantly stronger than those previously available, already in the initial LP relaxation, and we are able to provide new feasibility and optimality certificates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.