We study the Inert Higgs Doublet Model and its inert scalar Higgs H as the only source for dark matter. It is found that three mass regions of the inert scalar Higgs can give the correct dark matter relic density. The low mass region (between 3 and 50 GeV) is ruled out. New direct dark matter detection experiments will probe the intermediate (between 60 and 100 GeV) and high (heavier than 550 GeV) mass regions. Collider experiments are advised to search for D ± → HW ± decay in the two jets plus missing energy channel.
Abstract:We consider the possibility that the dark matter particle is a scalar WIMP messenger associated to neutrino mass generation, made stable by the same symmetry responsible for the radiative origin of neutrino mass. We focus on some of the implications of this proposal as realized within the singlet-triplet scotogenic dark matter model. We identify parameter sets consistent both with neutrino mass and the observed dark matter abundance. Finally we characterize the expected phenomenological profile of heavy Higgs boson physics at the LHC as well as at future linear Colliders.
∆L = 2 lepton number violation (LNV) at the TeV scale could provide an alternative interpretation of positive signal(s) in future neutrinoless double beta (0νββ) decay experiments. An interesting class of models from this point of view are those that at low energies give rise to dimension-9 vector operators and a dimension-7 operator, both of whose 0νββ-decay rates are "chirally suppressed". We study and compare for the first time the sensitivities of 0νββ-decay experiments and LHC searches to a simplified model in this class of TeV-scale LNV. Due to the chiral suppression of the vector operators, 0νββ-decay searches are found to be less constraining than LHC searches. For the chirally suppressed dimension-7 operator generated by TeV-scale mediators, in contrast, 0νββ-decay searches place strong constraints on the size of the new Yukawa coupling. Signals of this model at the LHC and 0νββ-decay experiments are entirely uncorrelated with the observed neutrinos masses, as these new sources of LNV give negligible contributions to the latter. We find the prospects for the high-luminosity LHC and ton-scale 0νββ-decay experiments to uncover the chirally-suppressed mechanism with TeV-scale LNV to be promising. We also comment on the sensitivity of the 0νββ-decay lifetime to certain unknown low-energy constants that in the case of dimension-9 scalar operators are expected to be large due to non-perturbative renormalization.
In the context of TeV-scale lepton number violating (LNV) interactions, we illustrate the interplay between leptogenesis, neutrinoless double beta (0νββ) decay, and LNV searches at proton-proton colliders. Using a concrete model for illustration, we identify the parameter space where standard thermal leptogenesis is rendered unviable due to washout processes and show how 0νββ decay and pp collisions provide complementary probes. We find that the new particle spectrum can have a decisive impact on the relative sensitivity of these two probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.